📄 gauss_quadrangle.c
字号:
#define RCSID "$Id: Gauss_Quadrangle.c,v 1.14 2006/02/26 00:42:54 geuzaine Exp $"/* * Copyright (C) 1997-2006 P. Dular, C. Geuzaine * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. * * Please report all bugs and problems to <getdp@geuz.org>. */#include "GetDP.h"#include "Quadrature.h"#include "Gauss_Quadrangle.h"/* Classic Gauss Integration over a quadrangle */void Gauss_Quadrangle (int Nbr_Points, int Num, double *u, double *v, double *w, double *wght) { GetDP_Begin("Gauss_Quadrangle"); switch (Nbr_Points) { case 3 : *u= xq3 [Num] ; *v= yq3 [Num] ; *w= 0. ; *wght= pq3 [Num] ; break ; case 4 : *u= xq4 [Num] ; *v= yq4 [Num] ; *w= 0. ; *wght= pq4 [Num] ; break ; case 7 : *u= xq7 [Num] ; *v= yq7 [Num] ; *w= 0. ; *wght= pq7 [Num] ; break ; default : Msg(DIRECT, ERROR_STR "Wrong number of Gauss points for Quadrangle"); Msg(GERROR, "Valid choices: 3, 4, 7"); break; } GetDP_End ;}/* Gauss-Legendre scheme to integrate over a quadrangle */int glq[MAX_LINE_POINTS] = {-1};double *glxq[MAX_LINE_POINTS], *glyq[MAX_LINE_POINTS], *glpq[MAX_LINE_POINTS];void GaussLegendre_Quadrangle (int Nbr_Points, int Num, double *u, double *v, double *w, double *wght) { int i,j,index=0,nb; double pt1,pt2,wt1,wt2,dum; GetDP_Begin("GaussLegendre_Quadrangle"); nb = (int)sqrt((double)Nbr_Points); if(nb*nb != Nbr_Points || nb > MAX_LINE_POINTS) Msg(GERROR, "Number of points should be n^2 with n in [1,%d]", MAX_LINE_POINTS) ; if(glq[0] < 0) for(i=0 ; i < MAX_LINE_POINTS ; i++) glq[i] = 0 ; if(!glq[nb-1]){ Msg(INFO, "Computing GaussLegendre %dX%d for Quadrangle", nb, nb); glxq[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double)); glyq[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double)); glpq[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double)); for(i=0; i < nb; i++) { Gauss_Line(nb, i, &pt1, &dum, &dum, &wt1); for(j=0; j < nb; j++) { Gauss_Line(nb, j, &pt2, &dum, &dum, &wt2); glxq[nb-1][index] = pt1; glyq[nb-1][index] = pt2; glpq[nb-1][index++] = wt1*wt2; } } glq[nb-1] = 1; } *u = glxq[nb-1][Num] ; *v = glyq[nb-1][Num] ; *w = 0. ; *wght = glpq[nb-1][Num] ; GetDP_End ;}/* Gauss Integration over a quadrangle with a 1/R singularity over node (-1,-1,0) */void GaussSingularR_Quadrangle (int Nbr_Points, int Num, double *u, double *v, double *w, double *wght) { GetDP_Begin("GaussSingularR_Quadrangle"); switch (Nbr_Points) { case 1 : *u= xqs1 [Num] ; *v= yqs1 [Num] ; *w= 0. ; *wght= pqs1 [Num] ; break ; case 3 : *u= xqs3 [Num] ; *v= yqs3 [Num] ; *w= 0. ; *wght= pqs3 [Num] ; break ; case 4 : *u= xqs4 [Num] ; *v= yqs4 [Num] ; *w= 0. ; *wght= pqs4 [Num] ; break ; default : Msg(DIRECT, ERROR_STR "Wrong number of (modified) Gauss Points for Quadrangle"); Msg(GERROR, "Valid choices: 1, 3, 4"); break; } GetDP_End ;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -