⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gauss_tetrahedron.c

📁 cfd求解器使用与gmsh网格的求解
💻 C
字号:
#define RCSID "$Id: Gauss_Tetrahedron.c,v 1.17 2006/02/26 00:42:54 geuzaine Exp $"/* * Copyright (C) 1997-2006 P. Dular, C. Geuzaine * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. * * Please report all bugs and problems to <getdp@geuz.org>. */#include "GetDP.h"#include "Quadrature.h"#include "Gauss_Tetrahedron.h"/* Gauss integration over a tetrahedron */void  Gauss_Tetrahedron (int Nbr_Points, int Num,			 double *u, double *v, double *w, double *wght) {  GetDP_Begin("Gauss_Tetrahedron");  switch (Nbr_Points) {  case  1 :     *u = xtet1 [Num] ; *v = ytet1 [Num] ; *w = ztet1 [Num] ;    *wght = ptet1 [Num] ; break ;  case  4 :     *u = xtet4 [Num] ; *v = ytet4 [Num] ; *w = ztet4 [Num] ;    *wght = ptet4 [Num] ; break ;  case  5 :     *u = xtet5 [Num] ; *v = ytet5 [Num] ; *w = ztet5 [Num] ;    *wght = ptet5 [Num] ; break ;  case 15 :     *u = xtet15[Num] ; *v = ytet15[Num] ; *w = ztet15[Num] ;    *wght = ptet15[Num] ; break ;  case 16 :     *u = xtet16[Num] ; *v = ytet16[Num] ; *w = ztet16[Num] ;    *wght = ptet16[Num] ; break ;  case 17 :     *u = xtet17[Num] ; *v = ytet17[Num] ; *w = ztet17[Num] ;    *wght = ptet17[Num] ; break ;  case 29 :     *u = xtet29[Num] ; *v = ytet29[Num] ; *w = ztet29[Num] ;    *wght = ptet29[Num] ; break ;  default :     Msg(DIRECT, ERROR_STR "Wrong number of Gauss Points for Tetrahedron");    Msg(GERROR, "Valid choices: 1, 4, 5, 15, 16, 17, 29");    break;  }  GetDP_End ;}/* Degenerate n1Xn2Xn3 Gauss-Legendre scheme to integrate over a tet */int gltet[MAX_LINE_POINTS] = {-1};double *glxtet[MAX_LINE_POINTS], *glytet[MAX_LINE_POINTS] ;double *glztet[MAX_LINE_POINTS], *glptet[MAX_LINE_POINTS];void hexToTet(double xi,double eta, double zeta,	      double *r, double *s, double *t, double *J) {  double r1,rs1;  GetDP_Begin("hexToTet");  *r = 0.5e0*(1.0e0+xi);  r1 = 1.0e0-(*r);  *s = 0.5e0*(1.0e0+eta)*r1;  rs1 = 1.0e0-(*r)-(*s);  *t = 0.5e0*(1.0e0+zeta)*rs1;  *J = 0.125e0*r1*rs1;  GetDP_End ;}void  GaussLegendre_Tetrahedron (int Nbr_Points, int Num,				 double *u, double *v, double *w, double *wght) {  int i,j,k,index=0,nb;  double pt1,pt2,pt3,wt1,wt2,wt3,dJ,dum;  GetDP_Begin("GaussLegendre_Tetrahedron");  nb = (int)pow((double)Nbr_Points, 1./3.);  if(nb*nb*nb != Nbr_Points || nb > MAX_LINE_POINTS)    Msg(GERROR, "Number of points should be n^3 with n in [1,%d]", MAX_LINE_POINTS) ;  if(gltet[0] < 0) for(i=0 ; i < MAX_LINE_POINTS ; i++) gltet[i] = 0 ;  if(!gltet[nb-1]){    Msg(INFO, "Computing degenerate GaussLegendre %dX%dX%d for Tetrahedron", 	nb, nb, nb);    glxtet[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double));    glytet[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double));    glztet[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double));    glptet[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double));    for(i=0; i < nb; i++) {      Gauss_Line(nb, i, &pt1, &dum, &dum, &wt1);      for(j=0; j < nb; j++) {	Gauss_Line(nb, j, &pt2, &dum, &dum, &wt2);	for(k=0; k < nb; k++) {	  Gauss_Line(nb, k, &pt3, &dum, &dum, &wt3);	  hexToTet(pt1, pt2, pt3, &glxtet[nb-1][index], &glytet[nb-1][index], 		   &glztet[nb-1][index], &dJ);	  glptet[nb-1][index++] = dJ*wt1*wt2*wt3;	}      }    }    gltet[nb-1] = 1;  }  *u = glxtet[nb-1][Num] ; *v = glytet[nb-1][Num] ; *w = glztet[nb-1][Num] ;  *wght = glptet[nb-1][Num] ;  GetDP_End ;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -