📄 gauss_triangle.c
字号:
#define RCSID "$Id: Gauss_Triangle.c,v 1.14 2006/02/26 00:42:54 geuzaine Exp $"/* * Copyright (C) 1997-2006 P. Dular, C. Geuzaine * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. * * Please report all bugs and problems to <getdp@geuz.org>. */#include "GetDP.h"#include "Quadrature.h"#include "Gauss_Triangle.h"/* Gauss Integration over a triangle */void Gauss_Triangle (int Nbr_Points, int Num, double *u, double *v, double *w, double *wght) { GetDP_Begin("Gauss_Triangle"); switch (Nbr_Points) { case 1 : *u= xt1 [Num] ; *v= yt1 [Num] ; *w= 0. ; *wght= pt1 [Num] ; break ; case 3 : *u= xt3 [Num] ; *v= yt3 [Num] ; *w= 0. ; *wght= pt3 [Num] ; break ; case 4 : *u= xt4 [Num] ; *v= yt4 [Num] ; *w= 0. ; *wght= pt4 [Num] ; break ; case 6 : *u= xt6 [Num] ; *v= yt6 [Num] ; *w= 0. ; *wght= pt6 [Num] ; break ; case 7 : *u= xt7 [Num] ; *v= yt7 [Num] ; *w= 0. ; *wght= pt7 [Num] ; break ; case 12 : *u= xt12[Num] ; *v= yt12[Num] ; *w= 0. ; *wght= pt12[Num] ; break ; case 13 : *u= xt13[Num] ; *v= yt13[Num] ; *w= 0. ; *wght= pt13[Num] ; break ; case 16 : *u= xt16[Num] ; *v= yt16[Num] ; *w= 0. ; *wght= pt16[Num] ; break ; default : Msg(DIRECT, ERROR_STR "Wrong number of Gauss points for Triangle"); Msg(GERROR, "Valid choices: 1, 3, 4, 6, 7, 12, 13, 16"); break; } GetDP_End ;}/* Degenerate n1Xn2 Gauss-Legendre scheme to integrate over a tri */int glt[MAX_LINE_POINTS] = {-1};double *glxt[MAX_LINE_POINTS], *glyt[MAX_LINE_POINTS], *glpt[MAX_LINE_POINTS];void quadToTri(double xi,double eta,double *r, double *s, double *J) { double r1; GetDP_Begin("quadToTri"); *r = 0.5e0*(1.0e0+xi); r1 = 1.0e0-(*r); *s = 0.5e0*(1.0e0+eta)*r1; *J = 0.25e0*r1; GetDP_End ;}void GaussLegendre_Triangle (int Nbr_Points, int Num, double *u, double *v, double *w, double *wght) { int i,j,index=0,nb; double pt1,pt2,wt1,wt2,dJ,dum; GetDP_Begin("GaussLegendre_Line"); nb = (int)sqrt((double)Nbr_Points); if(nb*nb != Nbr_Points || nb > MAX_LINE_POINTS) Msg(GERROR, "Number of points should be n^2 with n in [1,%d]", MAX_LINE_POINTS) ; if(glt[0] < 0) for(i=0 ; i < MAX_LINE_POINTS ; i++) glt[i] = 0 ; if(!glt[nb-1]){ Msg(INFO, "Computing degenerate GaussLegendre %dX%d for Triangle", nb, nb); glxt[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double)); glyt[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double)); glpt[nb-1] = (double*)Malloc(Nbr_Points*sizeof(double)); for(i=0; i < nb; i++) { Gauss_Line(nb, i, &pt1, &dum, &dum, &wt1); for(j=0; j < nb; j++) { Gauss_Line(nb, j, &pt2, &dum, &dum, &wt2); quadToTri(pt1, pt2, &glxt[nb-1][index], &glyt[nb-1][index], &dJ); glpt[nb-1][index++] = dJ*wt1*wt2; } } glt[nb-1] = 1; } *u = glxt[nb-1][Num] ; *v = glyt[nb-1][Num] ; *w = 0. ; *wght = glpt[nb-1][Num] ; GetDP_End ;}/* Gauss Integration over a triangle with a 1/R singularity over node (0,0,0) */void GaussSingularR_Triangle (int Nbr_Points, int Num, double *u, double *v, double *w, double *wght) { GetDP_Begin("GaussSingularR_Triangle"); switch (Nbr_Points) { case 1 : *u= xts1 [Num] ; *v= yts1 [Num] ; *w= 0. ; *wght= pts1 [Num] ; break ; case 3 : *u= xts3 [Num] ; *v= yts3 [Num] ; *w= 0. ; *wght= pts3 [Num] ; break ; case 4 : *u= xts4 [Num] ; *v= yts4 [Num] ; *w= 0. ; *wght= pts4 [Num] ; break ; default : Msg(DIRECT, ERROR_STR "Wrong number of (modified) Gauss points for Triangle"); Msg(GERROR, "Valid choices: 1, 3, 4"); break; } GetDP_End ;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -