📄 hal_aes.c
字号:
/******************************************************************************
Filename: aes.c
Revised: $Date: 2007-04-06 12:10:18 -0700 (Fri, 06 Apr 2007) $
Revision: $Revision: 13980 $
Description: Support for HW/SW AES encryption.
Copyright (c) 2006 by Texas Instruments, Inc.
All Rights Reserved. Permission to use, reproduce, copy, prepare
derivative works, modify, distribute, perform, display or sell this
software and/or its documentation for any purpose is prohibited
without the express written consent of Texas Instruments, Inc.
******************************************************************************/
/******************************************************************************
* INCLUDES
*/
#include "osal.h"
#include "hal_aes.h"
#include "hal_dma.h"
#ifdef __GNUC__
#include "avr/include/avr/pgmspace.h"
#endif
/******************************************************************************
* MACROS
*/
// Support for constant tables in flash
#ifdef __IAR_SYSTEMS_ICC__
#ifdef CC2420DB
#define PRGM __flash
#else
#define PRGM __code
#endif
#define IBOX(i) InvSbox[i]
#define MUL2(i) FFMult2[i]
#define MUL3(i) FFMult3[i]
#define POLY(i) Poly2Power[i]
#define POWR(i) Power2Poly[i]
#define RCON(i) RCon[i]
#define SBOX(i) Sbox[i]
#elif defined __GNUC__
#define PRGM PROGMEM
#define IBOX(i) pgm_read_byte_near(&InvSbox[i])
#define MUL2(i) pgm_read_byte_near(&FFMult2[i])
#define MUL3(i) pgm_read_byte_near(&FFMult3[i])
#define POLY(i) pgm_read_byte_near(&Poly2Power[i])
#define POWR(i) pgm_read_byte_near(&Power2Poly[i])
#define RCON(i) pgm_read_byte_near(&RCon[i])
#define SBOX(i) pgm_read_byte_near(&Sbox[i])
#endif
/******************************************************************************
* CONSTANTS
*/
#define BLOCK_LENGTH 128 // Defined by AES
#define KEY_ZLENGTH 128 // ZigBee only uses 128 bit keys
#define STATE_BLENGTH 16 // Number of bytes in State
#define KEY_BLENGTH 16 // Number of bytes in Key
#define Nb 4 // (BLOCK_LENGTH / 32) = Number of columns in State (also known as Nc)
#define Nk 4 // (KEY_ZLENGTH / 32) = Number of columns in Key
#define Nr 10 // Number of Rounds
#define KEY_EXP_LENGTH 176 // Nb * (Nr+1) * 4
/******************************************************************************
* TYPEDEFS
*/
/******************************************************************************
* LOCAL VARIABLES
*/
const uint8 PRGM FFMult2[256] = // Multiply by 0x02 Table
{
0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e,
0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,
0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e,
0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,
0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,
0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,
0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,
0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe,
0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05,
0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25,
0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45,
0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65,
0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85,
0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5,
0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5,
0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5
};
const uint8 PRGM FFMult3[256] = // Multiply by 0x03 Table
{
0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11,
0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21,
0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71,
0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41,
0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1,
0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1,
0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1,
0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81,
0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a,
0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba,
0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea,
0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda,
0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a,
0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a,
0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a,
0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a
};
const uint8 PRGM RCon[10] = // Rcon Table used in Key Schedule generation
{
0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1b,0x36
};
const uint8 PRGM Sbox[256] = // SubBytes Transformation Table
{
0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
};
/******************************************************************************
* GLOBAL VARIABLES
*/
void (*pSspAesEncrypt)( uint8 *, uint8 * ) = (void*)NULL;
/******************************************************************************
* FUNCTION PROTOTYPES
*/
//
// Internal Functions
//
void aesDmaInit( void );
void RoundKey( uint8 *, uint8 );
//
// Encryption Functions
//
void sspAesEncryptKeyExp( uint8 *, uint8 * );
void sspAesEncryptBasic( uint8 *, uint8 * );
void AddRoundKeySubBytes( uint8 *, uint8 * );
void ShiftRows( uint8 * );
void MixColumns( uint8 * );
/******************************************************************************
* @fn aesDmaInit
*
* @brief Initilize DMA for AES engine
*
* input parameters
*
* @param None
*
* @return None
*/
void aesDmaInit( void )
{
halDMADesc_t *ch;
/* Fill in DMA channel 1 descriptor and define it as input */
ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_IN );
HAL_DMA_SET_DEST( ch, HAL_AES_IN_ADDR ); /* Input of the AES module */
HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN ); /* Using the length field */
HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_BYTE ); /* One byte is transferred each time */
HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE ); /* A single byte is transferred each time */
HAL_DMA_SET_TRIG_SRC( ch, HAL_DMA_TRIG_ENC_DW ); /* Setting the AES module to generate the DMA trigger */
HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_1 ); /* The address for data fetch is incremented by 1 byte */
HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_0 ); /* The destination address is constant */
HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_DISABLE ); /* The DMA complete interrupt flag is not set at completion */
HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS ); /* Transferring all 8 bits in each byte */
HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_GUARANTEED ); /* DMA at least every second try. */
/* Fill in DMA channel 2 descriptor and define it as output */
ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_OUT );
HAL_DMA_SET_SOURCE( ch, HAL_AES_OUT_ADDR ); /* Start address of the segment */
HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN ); /* Using the length field */
HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_BYTE ); /* One byte is transferred each time */
HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE ); /* A single byte is transferred each time */
HAL_DMA_SET_TRIG_SRC( ch, HAL_DMA_TRIG_ENC_UP ); /* Setting the AES module to generate the DMA trigger */
HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_0 ); /* The address for data fetch is constant */
HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_1 ); /* The destination address is incremented by 1 byte */
HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_DISABLE ); /* The DMA complete interrupt flag is not set at completion */
HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS ); /* Transferring all 8 bits in each byte */
HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_GUARANTEED ); /* DMA at least every second try. */
}
/******************************************************************************
* @fn AesLoadIV
*
* @brief Writes IV into the CC2430
*
* input parameters
*
* @param IV - Pointer to IV.
*
* @return None
*/
void AesLoadIV( uint8 *IV )
{
halDMADesc_t *ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_IN );;
/* Modify descriptors for channel 1 */
HAL_DMA_SET_SOURCE( ch, IV );
HAL_DMA_SET_LEN( ch, STATE_BLENGTH );
/* Arm DMA channel 1 */
HAL_DMA_ARM_CH( HAL_DMA_AES_IN );
/* Set AES mode */
AES_SET_ENCR_DECR_KEY_IV( AES_LOAD_IV );
/* Kick it off, block until AES is ready */
AES_START();
while( !(ENCCS & 0x08) );
}
/******************************************************************************
* @fn AesLoadKey
*
* @brief Writes the key into the CC2430
*
* input parameters
*
* @param AesKey - Pointer to AES Key.
*
* @return None
*/
void AesLoadKey( uint8 *AesKey )
{
halDMADesc_t *ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_IN );
/* Modify descriptors for channel 1 */
HAL_DMA_SET_SOURCE( ch, AesKey );
HAL_DMA_SET_LEN( ch, KEY_BLENGTH );
/* Arm DMA channel 1 */
HAL_DMA_ARM_CH( HAL_DMA_AES_IN );
/* Set AES mode */
AES_SET_ENCR_DECR_KEY_IV( AES_LOAD_KEY );
/* Kick it off, block until AES is ready */
AES_START();
while( !(ENCCS & 0x08) );
}
/******************************************************************************
* @fn AesDmaSetup
*
* @brief Sets up DMA of 16 byte block using CC2430 HW aes encryption engine
*
* input parameters
*
* @param Cstate - Pointer to output data.
* @param msg_out_len - message out length
* @param msg_in - pointer to input data.
* @param msg_in_len - message in length
*
* output parameters
*
* @param Cstate - Pointer to encrypted data.
*
* @return None
*
*/
void AesDmaSetup( uint8 *Cstate, uint16 msg_out_len, uint8 *msg_in, uint16 msg_in_len )
{
halDMADesc_t *ch;
/* Modify descriptors for channel 1 */
ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_IN );
HAL_DMA_SET_SOURCE( ch, msg_in );
HAL_DMA_SET_LEN( ch, msg_in_len );
/* Modify descriptors for channel 2 */
ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_OUT );
HAL_DMA_SET_DEST( ch, Cstate );
HAL_DMA_SET_LEN( ch, msg_out_len );
/* Arm DMA channels 1 and 2 */
HAL_DMA_ARM_CH( HAL_DMA_AES_IN );
HAL_DMA_ARM_CH( HAL_DMA_AES_OUT );
}
/******************************************************************************
* @fn HalAesInit
*
* @brief Initilize AES engine
*
* input parameters
*
* @param None
*
* @return None
*/
void HalAesInit( void )
{
#if !((defined SOFTWARE_AES) && (SOFTWARE_AES == TRUE)) || ((defined SW_AES_AND_KEY_EXP) && (SW_AES_AND_KEY_EXP == TRUE))
/* Init DMA channels 1 and 2 */
aesDmaInit();
#endif
}
/******************************************************************************
* @fn ssp_HW_KeyInit
*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -