⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mt2060.c

📁 trident tm5600的linux驱动
💻 C
字号:
/* *  Driver for Microtune MT2060 "Single chip dual conversion broadband tuner" * *  Copyright (c) 2006 Olivier DANET <odanet@caramail.com> * *  This program is free software; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation; either version 2 of the License, or *  (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.= *//* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */#include <linux/module.h>#include <linux/delay.h>#include <linux/dvb/frontend.h>#include <linux/i2c.h>#include "compat.h"#include "dvb_frontend.h"#include "mt2060.h"#include "mt2060_priv.h"static int debug;module_param(debug, int, 0644);MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)// Reads a single registerstatic int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val){	struct i2c_msg msg[2] = {		{ .addr = priv->cfg->i2c_address, .flags = 0,        .buf = &reg, .len = 1 },		{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val,  .len = 1 },	};	if (i2c_transfer(priv->i2c, msg, 2) != 2) {		printk(KERN_WARNING "mt2060 I2C read failed\n");		return -EREMOTEIO;	}	return 0;}// Writes a single registerstatic int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val){	u8 buf[2] = { reg, val };	struct i2c_msg msg = {		.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2	};	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {		printk(KERN_WARNING "mt2060 I2C write failed\n");		return -EREMOTEIO;	}	return 0;}// Writes a set of consecutive registersstatic int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len){	struct i2c_msg msg = {		.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len	};	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {		printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);		return -EREMOTEIO;	}	return 0;}// Initialisation sequences// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49static u8 mt2060_config1[] = {	REG_LO1C1,	0x3F,	0x74,	0x00,	0x08,	0x93};// FMCG=2, GP2=0, GP1=0static u8 mt2060_config2[] = {	REG_MISC_CTRL,	0x20,	0x1E,	0x30,	0xff,	0x80,	0xff,	0x00,	0x2c,	0x42};//  VGAG=3, V1CSE=1#if 0static u8 mt2060_config3[] = {	REG_VGAG,	0x33};#endif#ifdef  MT2060_SPURCHECK/* The function below calculates the frequency offset between the output frequency if2 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2){	int I,J;	int dia,diamin,diff;	diamin=1000000;	for (I = 1; I < 10; I++) {		J = ((2*I*lo1)/lo2+1)/2;		diff = I*(int)lo1-J*(int)lo2;		if (diff < 0) diff=-diff;		dia = (diff-(int)if2);		if (dia < 0) dia=-dia;		if (diamin > dia) diamin=dia;	}	return diamin;}#define BANDWIDTH 4000 // kHz/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2){	u32 Spur,Sp1,Sp2;	int I,J;	I=0;	J=1000;	Spur=mt2060_spurcalc(lo1,lo2,if2);	if (Spur < BANDWIDTH) {		/* Potential spurs detected */		dprintk("Spurs before : f_lo1: %d  f_lo2: %d  (kHz)",			(int)lo1,(int)lo2);		I=1000;		Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);		Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);		if (Sp1 < Sp2) {			J=-J; I=-I; Spur=Sp2;		} else			Spur=Sp1;		while (Spur < BANDWIDTH) {			I += J;			Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);		}		dprintk("Spurs after  : f_lo1: %d  f_lo2: %d  (kHz)",			(int)(lo1+I),(int)(lo2+I));	}	return I;}#endif#define IF2  36150       // IF2 frequency = 36.150 MHz#define FREF 16000       // Quartz oscillator 16 MHzstatic int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params){	struct mt2060_priv *priv;	int ret=0;	int i=0;	u32 freq;	u8  lnaband;	u32 f_lo1,f_lo2;	u32 div1,num1,div2,num2;	u8  b[8];	u32 if1;	priv = fe->tuner_priv;	if1 = priv->if1_freq;	b[0] = REG_LO1B1;	b[1] = 0xFF;	if (fe->ops.i2c_gate_ctrl)		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */	mt2060_writeregs(priv,b,2);	freq = params->frequency / 1000; // Hz -> kHz	priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;	f_lo1 = freq + if1 * 1000;	f_lo1 = (f_lo1 / 250) * 250;	f_lo2 = f_lo1 - freq - IF2;	// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise	f_lo2 = ((f_lo2 + 25) / 50) * 50;	priv->frequency =  (f_lo1 - f_lo2 - IF2) * 1000,#ifdef MT2060_SPURCHECK	// LO-related spurs detection and correction	num1   = mt2060_spurcheck(f_lo1,f_lo2,IF2);	f_lo1 += num1;	f_lo2 += num1;#endif	//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )	num1 = f_lo1 / (FREF / 64);	div1 = num1 / 64;	num1 &= 0x3f;	// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )	num2 = f_lo2 * 64 / (FREF / 128);	div2 = num2 / 8192;	num2 &= 0x1fff;	if (freq <=  95000) lnaband = 0xB0; else	if (freq <= 180000) lnaband = 0xA0; else	if (freq <= 260000) lnaband = 0x90; else	if (freq <= 335000) lnaband = 0x80; else	if (freq <= 425000) lnaband = 0x70; else	if (freq <= 480000) lnaband = 0x60; else	if (freq <= 570000) lnaband = 0x50; else	if (freq <= 645000) lnaband = 0x40; else	if (freq <= 730000) lnaband = 0x30; else	if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;	b[0] = REG_LO1C1;	b[1] = lnaband | ((num1 >>2) & 0x0F);	b[2] = div1;	b[3] = (num2 & 0x0F)  | ((num1 & 3) << 4);	b[4] = num2 >> 4;	b[5] = ((num2 >>12) & 1) | (div2 << 1);	dprintk("IF1: %dMHz",(int)if1);	dprintk("PLL freq=%dkHz  f_lo1=%dkHz  f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);	dprintk("PLL div1=%d  num1=%d  div2=%d  num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);	dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);	mt2060_writeregs(priv,b,6);	//Waits for pll lock or timeout	i = 0;	do {		mt2060_readreg(priv,REG_LO_STATUS,b);		if ((b[0] & 0x88)==0x88)			break;		msleep(4);		i++;	} while (i<10);	if (fe->ops.i2c_gate_ctrl)		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */	return ret;}static void mt2060_calibrate(struct mt2060_priv *priv){	u8 b = 0;	int i = 0;	if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))		return;	if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))		return;	/* initialize the clock output */	mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);	do {		b |= (1 << 6); // FM1SS;		mt2060_writereg(priv, REG_LO2C1,b);		msleep(20);		if (i == 0) {			b |= (1 << 7); // FM1CA;			mt2060_writereg(priv, REG_LO2C1,b);			b &= ~(1 << 7); // FM1CA;			msleep(20);		}		b &= ~(1 << 6); // FM1SS		mt2060_writereg(priv, REG_LO2C1,b);		msleep(20);		i++;	} while (i < 9);	i = 0;	while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)		msleep(20);	if (i < 10) {		mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)		dprintk("calibration was successful: %d", (int)priv->fmfreq);	} else		dprintk("FMCAL timed out");}static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency){	struct mt2060_priv *priv = fe->tuner_priv;	*frequency = priv->frequency;	return 0;}static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth){	struct mt2060_priv *priv = fe->tuner_priv;	*bandwidth = priv->bandwidth;	return 0;}static int mt2060_init(struct dvb_frontend *fe){	struct mt2060_priv *priv = fe->tuner_priv;	int ret;	if (fe->ops.i2c_gate_ctrl)		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */	ret = mt2060_writereg(priv, REG_VGAG,			      (priv->cfg->clock_out << 6) | 0x33);	if (fe->ops.i2c_gate_ctrl)		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */	return ret;}static int mt2060_sleep(struct dvb_frontend *fe){	struct mt2060_priv *priv = fe->tuner_priv;	int ret;	if (fe->ops.i2c_gate_ctrl)		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */	ret = mt2060_writereg(priv, REG_VGAG,			      (priv->cfg->clock_out << 6) | 0x30);	if (fe->ops.i2c_gate_ctrl)		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */	return ret;}static int mt2060_release(struct dvb_frontend *fe){	kfree(fe->tuner_priv);	fe->tuner_priv = NULL;	return 0;}static const struct dvb_tuner_ops mt2060_tuner_ops = {	.info = {		.name           = "Microtune MT2060",		.frequency_min  =  48000000,		.frequency_max  = 860000000,		.frequency_step =     50000,	},	.release       = mt2060_release,	.init          = mt2060_init,	.sleep         = mt2060_sleep,	.set_params    = mt2060_set_params,	.get_frequency = mt2060_get_frequency,	.get_bandwidth = mt2060_get_bandwidth};/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1){	struct mt2060_priv *priv = NULL;	u8 id = 0;	priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);	if (priv == NULL)		return NULL;	priv->cfg      = cfg;	priv->i2c      = i2c;	priv->if1_freq = if1;	if (fe->ops.i2c_gate_ctrl)		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */	if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {		kfree(priv);		return NULL;	}	if (id != PART_REV) {		kfree(priv);		return NULL;	}	printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));	fe->tuner_priv = priv;	mt2060_calibrate(priv);	if (fe->ops.i2c_gate_ctrl)		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */	return fe;}EXPORT_SYMBOL(mt2060_attach);MODULE_AUTHOR("Olivier DANET");MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");MODULE_LICENSE("GPL");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -