📄 cx24123.c
字号:
/* * Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver * * Copyright (C) 2005 Steven Toth <stoth@linuxtv.org> * * Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc> * * Support for CX24123/CX24113-NIM by Patrick Boettcher <pb@linuxtv.org> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <linux/slab.h>#include <linux/kernel.h>#include <linux/module.h>#include <linux/init.h>#include "dvb_frontend.h"#include "cx24123.h"#define XTAL 10111000static int force_band;module_param(force_band, int, 0644);MODULE_PARM_DESC(force_band, "Force a specific band select "\ "(1-9, default:off).");static int debug;module_param(debug, int, 0644);MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");#define info(args...) do { printk(KERN_INFO "CX24123: " args); } while (0)#define err(args...) do { printk(KERN_ERR "CX24123: " args); } while (0)#define dprintk(args...) \ do { \ if (debug) { \ printk(KERN_DEBUG "CX24123: %s: ", __func__); \ printk(args); \ } \ } while (0)struct cx24123_state { struct i2c_adapter *i2c; const struct cx24123_config *config; struct dvb_frontend frontend; /* Some PLL specifics for tuning */ u32 VCAarg; u32 VGAarg; u32 bandselectarg; u32 pllarg; u32 FILTune; struct i2c_adapter tuner_i2c_adapter; u8 demod_rev; /* The Demod/Tuner can't easily provide these, we cache them */ u32 currentfreq; u32 currentsymbolrate;};/* Various tuner defaults need to be established for a given symbol rate Sps */static struct cx24123_AGC_val { u32 symbolrate_low; u32 symbolrate_high; u32 VCAprogdata; u32 VGAprogdata; u32 FILTune;} cx24123_AGC_vals[] ={ { .symbolrate_low = 1000000, .symbolrate_high = 4999999, /* the specs recommend other values for VGA offsets, but tests show they are wrong */ .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07, .FILTune = 0x27f /* 0.41 V */ }, { .symbolrate_low = 5000000, .symbolrate_high = 14999999, .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f, .FILTune = 0x317 /* 0.90 V */ }, { .symbolrate_low = 15000000, .symbolrate_high = 45000000, .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180, .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f, .FILTune = 0x145 /* 2.70 V */ },};/* * Various tuner defaults need to be established for a given frequency kHz. * fixme: The bounds on the bands do not match the doc in real life. * fixme: Some of them have been moved, other might need adjustment. */static struct cx24123_bandselect_val { u32 freq_low; u32 freq_high; u32 VCOdivider; u32 progdata;} cx24123_bandselect_vals[] ={ /* band 1 */ { .freq_low = 950000, .freq_high = 1074999, .VCOdivider = 4, .progdata = (0 << 19) | (0 << 9) | 0x40, }, /* band 2 */ { .freq_low = 1075000, .freq_high = 1177999, .VCOdivider = 4, .progdata = (0 << 19) | (0 << 9) | 0x80, }, /* band 3 */ { .freq_low = 1178000, .freq_high = 1295999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x01, }, /* band 4 */ { .freq_low = 1296000, .freq_high = 1431999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x02, }, /* band 5 */ { .freq_low = 1432000, .freq_high = 1575999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x04, }, /* band 6 */ { .freq_low = 1576000, .freq_high = 1717999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x08, }, /* band 7 */ { .freq_low = 1718000, .freq_high = 1855999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x10, }, /* band 8 */ { .freq_low = 1856000, .freq_high = 2035999, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x20, }, /* band 9 */ { .freq_low = 2036000, .freq_high = 2150000, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x40, },#if 0/* This band is not useful with the /2 divider, as its center frequency is approximately 2300MHz, which is outside of the tunable range. It is useful only with the /4 divider, as used in band #2. */ { .freq_low = 2150000, .freq_high = 2356000, .VCOdivider = 2, .progdata = (0 << 19) | (1 << 9) | 0x80, },#endif};static struct { u8 reg; u8 data;} cx24123_regdata[] ={ {0x00, 0x03}, /* Reset system */ {0x00, 0x00}, /* Clear reset */ {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */ {0x04, 0x10}, /* MPEG */ {0x05, 0x04}, /* MPEG */ {0x06, 0x31}, /* MPEG (default) */ {0x0b, 0x00}, /* Freq search start point (default) */ {0x0c, 0x00}, /* Demodulator sample gain (default) */ {0x0d, 0x7f}, /* Force driver to shift until the maximum (+-10 MHz) */ {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */ {0x0f, 0xfe}, /* FEC search mask (all supported codes) */ {0x10, 0x01}, /* Default search inversion, no repeat (default) */ {0x16, 0x00}, /* Enable reading of frequency */ {0x17, 0x01}, /* Enable EsNO Ready Counter */ {0x1c, 0x80}, /* Enable error counter */ {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */ {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */ {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */ {0x29, 0x00}, /* DiSEqC LNB_DC off */ {0x2a, 0xb0}, /* DiSEqC Parameters (default) */ {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */ {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */ {0x2d, 0x00}, {0x2e, 0x00}, {0x2f, 0x00}, {0x30, 0x00}, {0x31, 0x00}, {0x32, 0x8c}, /* DiSEqC Parameters (default) */ {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */ {0x34, 0x00}, {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */ {0x36, 0x02}, /* DiSEqC Parameters (default) */ {0x37, 0x3a}, /* DiSEqC Parameters (default) */ {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */ {0x44, 0x00}, /* Constellation (default) */ {0x45, 0x00}, /* Symbol count (default) */ {0x46, 0x0d}, /* Symbol rate estimator on (default) */ {0x56, 0xc1}, /* Error Counter = Viterbi BER */ {0x57, 0xff}, /* Error Counter Window (default) */ {0x5c, 0x20}, /* Acquisition AFC Expiration window (default is 0x10) */ {0x67, 0x83}, /* Non-DCII symbol clock */};static int cx24123_i2c_writereg(struct cx24123_state *state, u8 i2c_addr, int reg, int data){ u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2 }; int err; /* printk(KERN_DEBUG "wr(%02x): %02x %02x\n", i2c_addr, reg, data); */ err = i2c_transfer(state->i2c, &msg, 1); if (err != 1) { printk("%s: writereg error(err == %i, reg == 0x%02x," " data == 0x%02x)\n", __func__, err, reg, data); return err; } return 0;}static int cx24123_i2c_readreg(struct cx24123_state *state, u8 i2c_addr, u8 reg){ int ret; u8 b = 0; struct i2c_msg msg[] = { { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 }, { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &b, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { err("%s: reg=0x%x (error=%d)\n", __func__, reg, ret); return ret; } /* printk(KERN_DEBUG "rd(%02x): %02x %02x\n", i2c_addr, reg, b); */ return b;}#define cx24123_readreg(state, reg) \ cx24123_i2c_readreg(state, state->config->demod_address, reg)#define cx24123_writereg(state, reg, val) \ cx24123_i2c_writereg(state, state->config->demod_address, reg, val)static int cx24123_set_inversion(struct cx24123_state *state, fe_spectral_inversion_t inversion){ u8 nom_reg = cx24123_readreg(state, 0x0e); u8 auto_reg = cx24123_readreg(state, 0x10); switch (inversion) { case INVERSION_OFF: dprintk("inversion off\n"); cx24123_writereg(state, 0x0e, nom_reg & ~0x80); cx24123_writereg(state, 0x10, auto_reg | 0x80); break; case INVERSION_ON: dprintk("inversion on\n"); cx24123_writereg(state, 0x0e, nom_reg | 0x80); cx24123_writereg(state, 0x10, auto_reg | 0x80); break; case INVERSION_AUTO: dprintk("inversion auto\n"); cx24123_writereg(state, 0x10, auto_reg & ~0x80); break; default: return -EINVAL; } return 0;}static int cx24123_get_inversion(struct cx24123_state *state, fe_spectral_inversion_t *inversion){ u8 val; val = cx24123_readreg(state, 0x1b) >> 7; if (val == 0) { dprintk("read inversion off\n"); *inversion = INVERSION_OFF; } else { dprintk("read inversion on\n"); *inversion = INVERSION_ON; } return 0;}static int cx24123_set_fec(struct cx24123_state *state, fe_code_rate_t fec){ u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07; if ((fec < FEC_NONE) || (fec > FEC_AUTO)) fec = FEC_AUTO; /* Set the soft decision threshold */ if (fec == FEC_1_2) cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) | 0x01); else cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) & ~0x01); switch (fec) { case FEC_1_2: dprintk("set FEC to 1/2\n"); cx24123_writereg(state, 0x0e, nom_reg | 0x01); cx24123_writereg(state, 0x0f, 0x02); break; case FEC_2_3: dprintk("set FEC to 2/3\n"); cx24123_writereg(state, 0x0e, nom_reg | 0x02); cx24123_writereg(state, 0x0f, 0x04); break; case FEC_3_4: dprintk("set FEC to 3/4\n"); cx24123_writereg(state, 0x0e, nom_reg | 0x03); cx24123_writereg(state, 0x0f, 0x08); break; case FEC_4_5: dprintk("set FEC to 4/5\n"); cx24123_writereg(state, 0x0e, nom_reg | 0x04); cx24123_writereg(state, 0x0f, 0x10); break; case FEC_5_6: dprintk("set FEC to 5/6\n"); cx24123_writereg(state, 0x0e, nom_reg | 0x05); cx24123_writereg(state, 0x0f, 0x20); break; case FEC_6_7: dprintk("set FEC to 6/7\n"); cx24123_writereg(state, 0x0e, nom_reg | 0x06); cx24123_writereg(state, 0x0f, 0x40); break; case FEC_7_8: dprintk("set FEC to 7/8\n"); cx24123_writereg(state, 0x0e, nom_reg | 0x07); cx24123_writereg(state, 0x0f, 0x80); break; case FEC_AUTO: dprintk("set FEC to auto\n"); cx24123_writereg(state, 0x0f, 0xfe); break; default: return -EOPNOTSUPP; } return 0;}static int cx24123_get_fec(struct cx24123_state *state, fe_code_rate_t *fec){ int ret; ret = cx24123_readreg(state, 0x1b); if (ret < 0) return ret; ret = ret & 0x07; switch (ret) { case 1: *fec = FEC_1_2; break; case 2: *fec = FEC_2_3; break; case 3: *fec = FEC_3_4; break; case 4: *fec = FEC_4_5; break; case 5: *fec = FEC_5_6; break; case 6: *fec = FEC_6_7; break; case 7: *fec = FEC_7_8; break; default: /* this can happen when there's no lock */ *fec = FEC_NONE; } return 0;}/* Approximation of closest integer of log2(a/b). It actually gives the lowest integer i such that 2^i >= round(a/b) */static u32 cx24123_int_log2(u32 a, u32 b){ u32 exp, nearest = 0; u32 div = a / b; if (a % b >= b / 2) ++div; if (div < (1 << 31)) { for (exp = 1; div > exp; nearest++) exp += exp; } return nearest;}static int cx24123_set_symbolrate(struct cx24123_state *state, u32 srate){ u32 tmp, sample_rate, ratio, sample_gain; u8 pll_mult; /* check if symbol rate is within limits */ if ((srate > state->frontend.ops.info.symbol_rate_max) || (srate < state->frontend.ops.info.symbol_rate_min)) return -EOPNOTSUPP;; /* choose the sampling rate high enough for the required operation, while optimizing the power consumed by the demodulator */ if (srate < (XTAL*2)/2) pll_mult = 2; else if (srate < (XTAL*3)/2) pll_mult = 3; else if (srate < (XTAL*4)/2) pll_mult = 4; else if (srate < (XTAL*5)/2) pll_mult = 5; else if (srate < (XTAL*6)/2) pll_mult = 6; else if (srate < (XTAL*7)/2) pll_mult = 7; else if (srate < (XTAL*8)/2) pll_mult = 8; else pll_mult = 9; sample_rate = pll_mult * XTAL; /* SYSSymbolRate[21:0] = (srate << 23) / sample_rate We have to use 32 bit unsigned arithmetic without precision loss. The maximum srate is 45000000 or 0x02AEA540. This number has only 6 clear bits on top, hence we can shift it left only 6 bits at a time. Borrowed from cx24110.c */ tmp = srate << 6; ratio = tmp / sample_rate; tmp = (tmp % sample_rate) << 6; ratio = (ratio << 6) + (tmp / sample_rate); tmp = (tmp % sample_rate) << 6; ratio = (ratio << 6) + (tmp / sample_rate); tmp = (tmp % sample_rate) << 5; ratio = (ratio << 5) + (tmp / sample_rate); cx24123_writereg(state, 0x01, pll_mult * 6); cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f); cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff); cx24123_writereg(state, 0x0a, ratio & 0xff); /* also set the demodulator sample gain */ sample_gain = cx24123_int_log2(sample_rate, srate); tmp = cx24123_readreg(state, 0x0c) & ~0xe0; cx24123_writereg(state, 0x0c, tmp | sample_gain << 5); dprintk("srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", srate, ratio, sample_rate, sample_gain); return 0;}/* * Based on the required frequency and symbolrate, the tuner AGC has * to be configured and the correct band selected. * Calculate those values. */static int cx24123_pll_calculate(struct dvb_frontend *fe, struct dvb_frontend_parameters *p){ struct cx24123_state *state = fe->demodulator_priv; u32 ndiv = 0, adiv = 0, vco_div = 0; int i = 0; int pump = 2; int band = 0; int num_bands = ARRAY_SIZE(cx24123_bandselect_vals); struct cx24123_bandselect_val *bsv = NULL; struct cx24123_AGC_val *agcv = NULL; /* Defaults for low freq, low rate */ state->VCAarg = cx24123_AGC_vals[0].VCAprogdata; state->VGAarg = cx24123_AGC_vals[0].VGAprogdata; state->bandselectarg = cx24123_bandselect_vals[0].progdata; vco_div = cx24123_bandselect_vals[0].VCOdivider; /* For the given symbol rate, determine the VCA, VGA and * FILTUNE programming bits */ for (i = 0; i < ARRAY_SIZE(cx24123_AGC_vals); i++) { agcv = &cx24123_AGC_vals[i]; if ((agcv->symbolrate_low <= p->u.qpsk.symbol_rate) && (agcv->symbolrate_high >= p->u.qpsk.symbol_rate)) { state->VCAarg = agcv->VCAprogdata; state->VGAarg = agcv->VGAprogdata; state->FILTune = agcv->FILTune; } } /* determine the band to use */ if (force_band < 1 || force_band > num_bands) { for (i = 0; i < num_bands; i++) { bsv = &cx24123_bandselect_vals[i]; if ((bsv->freq_low <= p->frequency) && (bsv->freq_high >= p->frequency)) band = i; } } else band = force_band - 1; state->bandselectarg = cx24123_bandselect_vals[band].progdata; vco_div = cx24123_bandselect_vals[band].VCOdivider; /* determine the charge pump current */ if (p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high) / 2) pump = 0x01; else pump = 0x02;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -