⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mem.c

📁 基于56F8346的异步电机VVVF控制程序。
💻 C
📖 第 1 页 / 共 4 页
字号:
  if (pPool -> Assert && pMemory == NULL) {
    #ifdef MEM_VERBOSE
    memPrintAllocatedBlocks(pMemPool);
    #endif
    assert(!"Out of Memory");
  }
  archGetSetSaturationMode(bSatMode);
  if (pMemory == NULL) return (void *) NULL;
  return pMemory;
}


/*******************************************************
*
*  memMallocAligned
*     Allocate memory aligned so that it ends on a 2**k boundary.
*
*     If the size requested is 0, return NULL, per ANSI C.
*
*  LABEL:
*     WHILE we haven't yet allocated a block DO
*       Skip blocks in use.
*
*       IF we hit the tail block of the pool THEN
*         IF we have already wrapped through the pool once THEN
*           return NULL to indicate failure to allocate.
*         ELSE
*           Reset the block pointer to the first block of the pool.
*           Indicate that we have wrapped around.
*           Continue from LABEL.
*       ENDIF
*
*       Merge all contiguous free blocks from the current block to the
*         first in-use block or the end of the pool.
*       IF the consolidated block satisfies the request THEN
*         Split the block, if it is large enough, and return the
*           aligned block of the split.
*       ENDIF
*
*       Bump the block search pointer to the next block
*     ENDWHILE
*
*******************************************************/
void * (memMallocAligned)(mem_sPool * pMemPool, size_t Size)
{
  bool         bSatMode;
  Int32        SizeNeeded = (Int32) Size;
  Int32        BlockSize;
  int          Wrapped;
  sBlockHead * pBlock;
  void       * pMemory    = (void *) NULL;
  sPool      * pPool      = (sPool *) pMemPool;
  UInt32     Modulo;
  UInt32       ModuloMask;
  Int32        pStartOfModBuffer;
  Int32        pEndOfModBuffer;
  Int32        SpareWords;

  if(bMemInitialized == false) {
    Initialize();
  }
  if (SizeNeeded == 0)
    return (void *) NULL;
  bSatMode = archGetSetSaturationMode(false);
  Modulo = 1;
  while (SizeNeeded > Modulo)
  {
    Modulo = Modulo << 1;
  }
  ModuloMask = Modulo - 1;
  ModuloMask = ~ ModuloMask;
  #ifdef ADDRESSING_8
  /* Allocate in 4 8-bit units only. */
  SizeNeeded = ((SizeNeeded + 3) & ~3);
  #endif
  SizeNeeded += sizeof(sBlockHead);
  pBlock  = pPool -> pCurrent;
  Wrapped = false;
  while (true) {
    /* Skip blocks in use. */
    while (true) {
      BlockSize = pBlock -> Size;
      if (BlockSize >= 0)
        break;
      /* Typecasting required to force 32 bit operation and preserve negative BlockSize */
      pBlock = (sBlockHead *) (((UInt32)((char *)pBlock) - BlockSize)/2);
      assert ((((UWord16)pBlock) & 0x0001) == 0); /* Ensure that pBlock is double-word aligned */
    }
    /* Found a block that is not in use.  If it's the last block of the pool,
    // wrap to the beginning. If we reach the end after wrapping, then we're
    // out of memory. */
    if (BlockSize == 0) {
      if (Wrapped) {
        break;
      }
      pBlock  = pPool -> pFirst;
      Wrapped = true;
      continue;
    }
    /* Merge free blocks that immediately follow this one in an
    // attempt to make the current block big enough;  ask for 2 * SizeNeeded
    // in order to bracket an aligned area */
    BlockSize = MergeFree(pPool, pBlock, SizeNeeded+SizeNeeded);
    /* If the (now merged) free block is big enough, we split it in two
    // if the remainder is big enough to make it worthwhile.
    //
    // If the block still isn't big enough, at least we made a bigger
    // free block that will make for faster allocations later. */
    if (BlockSize >= SizeNeeded) {
      pStartOfModBuffer = (Int32)(((((Int32)(((char *)pBlock) + Modulo  - 1)) & ModuloMask)) - sizeof(sBlockHead));
      while (true)
      {
        SpareWords = pStartOfModBuffer - (Int32)((char *)pBlock);
                if ((SpareWords == 0) || (SpareWords >= ((Int32)sizeof(sBlockHead))))
        {
          break;
        }
        pStartOfModBuffer = (Int32) (pStartOfModBuffer + Modulo);
      }
      pEndOfModBuffer = pStartOfModBuffer + SizeNeeded - 1;
      if (pEndOfModBuffer < ((Int32)((char *)pBlock)) + BlockSize)
      {
        pMemory = SplitBlockRev(pPool,
                        pBlock,
                        (UInt32) SpareWords);
        pMemory = SplitBlock   (pPool,
                        pMemory,
                        SizeNeeded);
        break;
      }
    }
    /* Move to the next candidate block and loop back up to try again */
    pBlock = (sBlockHead *) ((char *) pBlock + BlockSize);
    assert ((((UWord16)pBlock) & 0x0001) == 0); /* Ensure that pBlock is double-word aligned */
  }
  if (pPool -> Assert && pMemory == NULL) {
    #ifdef MEM_VERBOSE
    memPrintAllocatedBlocks(pMemPool);
    #endif
    assert(!"Out of Memory");
  }
  archGetSetSaturationMode (bSatMode);
  if (pMemory == NULL)
    return (void *) NULL;
  return pMemory;
}

/*******************************************************
*
* Method: memRealloc
*
* Description: This function dynamically reallocates an array
*
*******************************************************/
extern void * memRealloc(mem_sPool * pMemPool,void * pData,
                                      size_t SizeRequested)
{
  bool           bSatMode;
  Int32          OriginalSize;
  Int32          SizeNeeded;
  Int32          Size = (Int32) SizeRequested;
  sBlockHead    * pBlock = (sBlockHead *) pData;
  void          * pMem;
  sPool         * pPool = (sPool *) pMemPool;

  if(bMemInitialized == false)
  {
    Initialize();
  }
  if (Size == 0) {
    memFree(pMemPool, pData);
    return (void *) NULL;
  }
  if (pData == NULL) {
    return (memMalloc)(pMemPool, (size_t) Size);
  }
  bSatMode = archGetSetSaturationMode(false);
  /* Back up to the block's header. */
  pBlock -= 1;
  #ifdef ADDRESSING_8
  /* Allocate in 4 complete 8-bit units only. */
  SizeNeeded = ((Size + 3) & ~3);
  #else
  SizeNeeded = Size;
  #endif
  SizeNeeded += sizeof(sBlockHead);
  pBlock -> Size = -(pBlock -> Size);
    OriginalSize = (Int32)(pBlock -> Size - sizeof(sBlockHead));
  /* Merge free memory blocks immediately following the one pointed to
  // by pBlock to see if we can avoid having to copy the data. */
  if (MergeFree(pPool, pBlock, SizeNeeded) >= SizeNeeded) {
    pMem = SplitBlock(pPool, pBlock, SizeNeeded);
  }
  else {
    pMem = (void *) NULL;
    pBlock -> Size = -(pBlock -> Size);
  }
  archGetSetSaturationMode (bSatMode);
  /* If the allocation was successful, we're done. */
  if (pMem != NULL) {
    return pMem;
  }
  /* We were not able to extend the block in place.  Now we have to
  // allocate a brand new block. */
  if ((pMem = (memMalloc)(pMemPool, (size_t) Size)) == NULL)  {
    return (void *) NULL;
  }
  /* Copy the data from the old memory area to the new.  If the new
  // block is larger than the old block, copy all the original data.
  // If the new size is smaller (the user is trimming the data), only
  // copy as much old data as will fit into the new area. */
  memcpy(pMem, pData, (size_t) (Size < OriginalSize ? Size : OriginalSize));
  /* Once the original data is copied to the new memory, free the
  // original memory. */
  memFree(pMemPool, pData);
  return pMem;
}

/*******************************************************
*
* Method: memCalloc
*
* Description: This function dynamically allocates an array
*              with elements initialized to zero.
*
* Arguments:
*      pPool - memory pool
*   Elements - number of the elements
* ElementSize - size of the element
*
* Return:      None
*
*******************************************************/
extern void * memCalloc(mem_sPool * pPool, size_t Elements, size_t ElementSize)
{
  size_t      TotalSize = Elements * ElementSize;
  void      * pMemory   = (memMalloc)(pPool, TotalSize);

  if (pMemory == (void *) NULL)
    return (void *) NULL;
  memset(pMemory, 0, TotalSize);
  return pMemory;
}


static sBlockHead EmptyInternalMemoryPool[2];
static sBlockHead EmptyExternalMemoryPool[2];

/*******************************************************
*
* Method: Initialize
*
* Description: This function initializes the memory manager
*              driver.
*
* Arguments:   None
*
* Return:      None
*
*******************************************************/
static void Initialize (void)
{
  UInt16                 i;
  const mem_sPartition * pPartitionList;
  /* Initialize empty pools */
  memInitializePool (  &InternalMemoryPool,
                EmptyInternalMemoryPool,
                sizeof (EmptyInternalMemoryPool),
                false,
                false
              );
  memInitializePool (  &ExternalMemoryPool,
                EmptyExternalMemoryPool,
                sizeof (EmptyExternalMemoryPool),
                false,
                false
              );

  switch (InitialState.EXbit)
  {
    case 0:
        pPartitionList = InitialState.intPartitionList;
        for (i=0; i<InitialState.numIntPartitions; i++) {
          assert (memIsIM(pPartitionList -> partitionAddr));
          memExtendPool (&InternalMemoryPool,
                    pPartitionList -> partitionAddr,
                    pPartitionList -> partitionSize
                    );
          pPartitionList++;
        }
        pPartitionList = InitialState.extPartitionList;
        for (i=0; i<InitialState.numExtPartitions; i++) {
          assert (memIsEM(pPartitionList -> partitionAddr));
          memExtendPool (&ExternalMemoryPool,
                    pPartitionList -> partitionAddr,
                    pPartitionList -> partitionSize
                    );
          pPartitionList++;
        }
        break;
    case 1:
        /* Ensure that no internal partitions were specified with the external memory map */
        assert (InitialState.numIntPartitions == 0);
        pPartitionList = InitialState.extPartitionList;
        for (i=0; i<InitialState.numExtPartitions; i++) {
          assert (memIsEM(pPartitionList -> partitionAddr));
          memExtendPool (&ExternalMemoryPool,
                    pPartitionList -> partitionAddr,
                    pPartitionList -> partitionSize
                    );
          pPartitionList++;
        }
        break;
    default:
        assert (false);
        break;
  }
  bMemInitialized = true;
}


/*******************************************************
*
* Method: memInitialize
*
* Description: This function initializes the memory manager
*              data structure (InitialState).
*
* Arguments:
*  pMemoryState  - parametr will be copied to InitialState variable
*
* Return:      None
*
*******************************************************/
EXPORT void    memInitialize (mem_sState * pMemoryState)
{
  /* Copy MemoryState to InitialState */
  memcpy((void *)&InitialState, (const void *)pMemoryState, sizeof(mem_sState));
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -