📄 trbvp.m
字号:
function trbvp
%TRBVP Exercise for Example 3 of the BVP tutorial.
% This problem is studied in section 5.4 of B.A. Finlayson, The Method of
% Weighted Residuals and Variational Principles, Academic, New York, 1972.
% It arises when modelling a tubular reactor with axial dispersion. An
% isothermal situation with n-th order irreversible reaction leads to
%
% y'' = Pe*(y' - R*y^n)
%
% Here Pe is the axial Peclet number and R is the reaction rate group.
% The boundary conditions are
%
% y'(0) = Pe*(y(0) - 1), y'(1) = 0.
%
% Finlayson compares results he obtains with an orthogonal collocation
% method to results obtained by others with finite differences when
% Pe = 1, R = 2, and n = 2. These results are compared here to results
% obtained with BVP4C. BVPVAL is used to get a smoother graph of y(x).
% Known parameter
Pe = 1;
options = bvpset('stats','on');
solinit = bvpinit(linspace(0,1,5),[0.5 0]);
sol = bvp4c(@trode,@trbc,solinit,options,Pe);
fprintf('\n');
fprintf('Other authors report y(0) = 0.63678, y(1) = 0.45759.\n');
fprintf('Values computed are y(0) = %7.5f, y(1) = %7.5f\n',sol.y(1,1),sol.y(1,end));
clf reset
xint = linspace(0,1);
Sxint = bvpval(sol,xint);
plot(xint,Sxint(1,:))
title('Mass transfer in a tubular reactor.')
xlabel('x')
ylabel('y')
shg
% --------------------------------------------------------------------------
function dydx = trode(x,y,Pe)
%TRODE ODE function for the exercise of Example 3 of the BVP tutorial.
dydx = [ y(2)
Pe*(y(2) + 2*y(1)^2)];
% --------------------------------------------------------------------------
function res = trbc(ya,yb,Pe)
%TRBC Boundary conditions for the exercise of Example 3 of the BVP tutorial.
res = [ ya(2) - Pe*(ya(1) - 1)
yb(2) ];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -