⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 borzoi.h

📁 椭圆曲线Elliptic Curve)加密算法的开源实现 国内很难下载到 borZoi-1.0.2.tar.gz
💻 H
字号:
/*    borZoi - An Elliptic Curve Cryptography Library   Copyright (C) 2001 Anthony Mulcahy   This program is free software; you can redistribute it and/or modify   it under the terms of the GNU General Public License as published by   the Free Software Foundation; either version 2, or (at your option)   any later version.   This program is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the   GNU General Public License for more details.   \You should have received a copy of the GNU General Public License   along with this program; if not, write to the Free Software Foundation,   Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */#include "borzoi_util.h"#ifndef BORZOI_H#define BORZOI_Htypedef unsigned char OCTET;typedef std::vector<OCTET> OCTETSTR;// Abstract base classclass borZoi {public:	virtual std::ostream& put (std::ostream&s) const = 0;};inline std::ostream& operator<< (std::ostream&s, borZoi& b) { return b.put (s); }// Elliptic Curve Domain Parametersclass EC_Domain_Parameters : public borZoi{public:	unsigned long m; // a positive integer, specifying the field GF(2^m)	int basis; // Gaussia(1), Trinomial(2), Pentanomial(3)	unsigned long trinomial_k; // x^m + x^k +1	unsigned long pentanomial_k3; // x^m + x^k3 + x^k2 + x^k1 +1	unsigned long pentanomial_k2; // x^m + x^k3 + x^k2 + x^k1 +1	unsigned long pentanomial_k1; // x^m + x^k3 + x^k2 + x^k1 +1	F2M a; // an element of GF(2^m), E: y^2 + xy = x^3 + ax^2 + b	F2M b; // an element of GF(2^m), E: y^2 + xy = x^3 + ax^2 + b	BigInt r; // a positive prime integer dividing the number of points on E	Point G; // a point on E of order r;	BigInt k; // a positive prime integer, k = #E/r	inline EC_Domain_Parameters () {}	inline EC_Domain_Parameters (unsigned long m_val,			int basis_val, unsigned long tri_k_val,			const Curve& c_val, const BigInt& r_val,			const Point& G_val, const BigInt& k_val) { m=m_val; basis=basis_val; trinomial_k = tri_k_val; a=c_val.a2; b=c_val.a6; r=r_val; G=G_val; k=k_val; }	inline EC_Domain_Parameters (unsigned long m_val,			int basis_val, unsigned long pen_k3_val,			unsigned long pen_k2_val, 			unsigned long pen_k1_val, const Curve& c_val, 			const BigInt& r_val, const Point& G_val, const BigInt& k_val) { m=m_val; basis=basis_val; pentanomial_k3 = pen_k3_val; pentanomial_k2 = pen_k2_val; pentanomial_k1 = pen_k1_val; a=c_val.a2; b=c_val.a6; r=r_val; G=G_val; k=k_val; }	bool valid ();	// A partial implementation (steps 6.4 to 7) of A.16.8 in P1363	//	// 6.4 Check that b != 0 in GF (2 m ).	// 6.5 Check that G != O. Let G = (x, y).	// 6.6 Check that x and y are elements of GF (2 m ).	// 6.7 Check that y^2 + xy = x^3 + ax^2 + b in GF (2 m ).	// 6.8 Check that rG = O.	// 6.9 Check that the curve is not an instance of the following 	//     excluded case:	// 6.9.1 If the output of the algorithm given in A.12.1 is "False"	//       then the curve is excluded because it is subject to the MOV	//       reduction attack described in [MOV93].	// 7. Output "True" if the checks given in Steps 4 through 6 work, 	//    and "False" otherwise.	EC_Domain_Parameters& operator= (const EC_Domain_Parameters& dp);	std::ostream& put (std::ostream&s) const;};// Elliptic Curve Private Keyclass ECPrivKey {public:	EC_Domain_Parameters dp;	BigInt s; // the private key	ECPrivKey (const EC_Domain_Parameters& ecdp); // generate a random private key	ECPrivKey (const EC_Domain_Parameters& ecdp, const BigInt& ecs);	ECPrivKey& operator= (const ECPrivKey& kp);};#define ECSecKey ECPrivKey	// Deprecated - only for compatibility with old code// Elliptic Curve Public Keyclass ECPubKey {public:	EC_Domain_Parameters dp; // the EC domain parameters for this key pair	Point W; // the public key	inline ECPubKey () {};	ECPubKey (const ECPrivKey& sk);	ECPubKey (const EC_Domain_Parameters& dp, const Point& W);	bool valid (); // return true iff the public key is valid	ECPubKey& operator= (const ECPubKey& kp);};// Hash FunctionsOCTETSTR SHA1 (const OCTETSTR& x);OCTETSTR SHA1 (const std::string& x);OCTETSTR SHA1 (BigInt x);// Key Derivation Function 2 from P1363a// Uses the SHA-1 hash function// Throws borzoiException for invalid output lengthsOCTETSTR KDF2 (OCTETSTR Z, OCTETSTR::size_type oLen, OCTETSTR P);//  HMAC message authentication code from P1363a// Uses the SHA-1 hash function// The tag length is equal to 160 bitsOCTETSTR MAC1 (OCTETSTR KB, OCTETSTR M);/********** Symmetric Encryption / Decryption **********/// Advanced Encryption Symmetric (AES) encryption algorithm in Cipher Block // Chaining (CBC) mode with a null initialization vector// Returns the encrypted cipher textOCTETSTR AES_CBC_IV0_Encrypt (OCTETSTR KB, OCTETSTR M, int keysize=128);// Advanced Encryption Symmetric (AES) decryption algorithm in Cipher Block // Chaining (CBC) mode with a null initialization vector// Returns the decrypted plain text or else throws borzoiExceptionOCTETSTR AES_CBC_IV0_Decrypt (OCTETSTR KB, OCTETSTR C, int keysize=128);/********** Elliptic Curve Algorithms **********/// Elliptic Curve Secret Value Derivation Primitive, Diffie-Hellman version// Throws borzoiException if the point P is zeroF2M ECSVDP_DH (const EC_Domain_Parameters& dp, const BigInt& s, const Point& Wi);// Elliptic Curve Key Agreement Scheme, Diffie-HellmanOCTETSTR ECKAS_DH1 (const EC_Domain_Parameters& dp, const BigInt& s, const Point& Wi);OCTETSTR ECKAS_DH1 (const EC_Domain_Parameters& dp, const BigInt& s, const Point& Wi, const OCTETSTR& P);// Elliptic Curve Digital Signature Algorithmclass ECDSA : public borZoi {public:	BigInt c;	BigInt d;	inline ECDSA () {}	ECDSA (const BigInt& cval, const BigInt& dval);	ECDSA (const ECPrivKey& sk, const BigInt& f);	bool verify (const ECPubKey& pk, const BigInt& f);	std::ostream& put (std::ostream&s) const;	ECDSA& operator= (const ECDSA& esig);};// Elliptic Curve Integrated Encryption Systemclass ECIES : public borZoi {public:	ECPubKey V;	OCTETSTR C; // Ciphertext	OCTETSTR T; // Tag;	inline ECIES () {}	inline ECIES (ECPubKey V_val, OCTETSTR C_val, OCTETSTR T_val) { V=V_val; C=C_val; T=T_val;}	ECIES (OCTETSTR& M, ECPubKey& pk);	OCTETSTR decrypt (ECPrivKey& sk); // Throws borzoiException if the tag is invalid	std::ostream& put (std::ostream&s) const;};/********** Data Formats **********/class DER : public borZoi {public:	inline DER (OCTETSTR vin) { v=vin; } // set v = to vin	DER (EC_Domain_Parameters dp);	DER (ECPubKey pk); // encode a public key	DER (ECPrivKey sk); // encode a private key	DER (ECDSA sig); // encode a signature	DER (ECIES ct); // encode an ECIES ciphertext (non-standard)	EC_Domain_Parameters toECDP ();	ECPubKey toECPubKey (); // convert a DER string to an EC public key	ECPrivKey toECPrivKey (); // convert a DER string to an EC private key	ECDSA toECDSA (); // convert a DER string to an ECDSA signature	ECIES toECIES (); // convert a DER string to an ECIES ciphertext (non-standard)	DER& operator= (const DER& d);	std::ostream& put (std::ostream&s) const;	OCTETSTR v;private:};class HexEncoder : public borZoi {public:	inline HexEncoder (OCTETSTR vin) { v=vin; } // set v = to vin	inline HexEncoder (DER der) { v=der.v; }	HexEncoder& operator= (const HexEncoder& d);	std::ostream& put (std::ostream&s) const;	OCTETSTR v;private:};#endif	// BORZOI_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -