⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 num2ibm.m

📁 matlab源代码
💻 M
字号:
function b=num2ibm(x)% num2ibm : convert IEEE 754 doubles to IBM 32 bit floating point format%    b=num2ibm(x)% x is a matrix of doubles% b is a corresponding matrix of uint32%% The representations for NaN and inf are arbitrary%% See also ibm2num% %    This program is free software; you can redistribute it and/or modify%    it under the terms of the GNU General Public License as published by%    the Free Software Foundation; either version 2 of the License, or%    (at your option) any later version.%%    This program is distributed in the hope that it will be useful,%    but WITHOUT ANY WARRANTY; without even the implied warranty of%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the%    GNU General Public License for more details.%%    You should have received a copy of the GNU General Public License%    along with this program; if not, write to the Free Software%    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA%%% (C) Brian Farrelly, 22 October 2001%  mailto:Brian.Farrelly@nho.hydro.com          Norsk Hydro Research Centre%  phone +47 55 99 68 74                 (((                  Postboks 7190%  fax   +47 55 99 69 70                2oooS                 N-5020 Bergen%  home  +47 55 13 78 49                HYDRO                        Norway%b=repmat(uint32(0),size(x));err=zeros(size(x));%format longx(x> 7.236998675585915e+75)= inf;        % change big numbers to infinityx(x<-7.236998675585915e+75)=-inf;        % 7.236998675585915e+75 is                                         %    ibm2num(uint32(hex2dec('7fffffff')) or                                         %    ibm2num(num2ibm(inf))[F E]=log2(abs(x));e=E/4;                         % exponent of base 16ec=ceil(e);                    % adjust upwards to integerp=ec+64;                       % offset exponentf=F.*2.^(-4*(ec-e));           % correct mantissa for fractional part of exponentf=round(f*2^24);               % convert to integer. Roundoff here can be as large as                               % 0.5/2^20 when mantissa is close to 1/16 so that                               % 3 bits of signifance are lost.p(f==2^24)=p(f==2^24)+1;       % Roundoff can cause f to be 2^24 for numbers just under af(f==2^24)=2^20;               % power of 16, so correct for this%format hexpsi=uint32(p*2^24);            % put exponent in first byte of psi.phi=uint32(f);                 % put mantissa into last 3 bytes of phi % make bit representationb=bitor(psi,phi);                        % exponent and mantissab(x<0)=bitset(b(x<0),32);                % sign bit %format long% special casesb(x==0)          =uint32(0)                  ;         %  bias is incorrect for zero b(isnan(x))      =uint32(hex2dec('7fffffff'));         %  7.237005145973116e+75 in IBM formatb(isinf(x) & x>0)=uint32(hex2dec('7ffffff0'));         %  7.236998675585915e+75    ,,b(isinf(x) & x<0)=uint32(hex2dec('fffffff0'));         % -7.236998675585915e+75    ,,                                                       % Note that NaN > inf in IBM format% check bit representation for normal cases checkx=ibm2num(b);                      % note that use of base 16 in IBM formatz=x==0;                                 % can lead to a loss of 3 bits of precisionerr(z)=0;                               % compared with an IEEE single.q=(checkx(~z)-x(~z))./x(~z);err(~z) = abs(q) > 5e-7;                % this is almost reached with numbers                                        % of the form 16^n + 0.5*16^(n-5) where                                        % the mantissa is 100001 hex. Roundoff                                        % error is then 0.5/16^5=0.5/2^20=4.7684e-7                                                                                              if any(err)   warning('Conversion error in num2ibm for the following:')   disp(x(logical(err)))end   

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -