📄 ava_approximation.m
字号:
function [refl,coeff]=ava_approximation(vp,vs,rho,angles,type)
% Compute approximate amplitude vs angle of incidence from Vp, Vs, and density;
% if these elastic parameters are vectors they must have the same length.
% Written by: E. R.: February 20, 2003
% Last updated: October 4, 2004: remove "pack" command, unnecessary code
%
% [refl,coeff]=ava_approximation(vp,vs,rho,angles,type)
% INPUT
% vp column vector of P-velocities
% vs column vector of S-velocities
% rho column vector of densities
% angles row vector of angles of incidence (in degrees)
% type type of approximation
% possible values are 'Aki', 'Bortfeld', 'Shuey','Hilterman','two-term'
% OUTPUT
% refl matrix of reflectivities; one column per angle
% size(refl,1) = size(vp,1)-1
% coeff coefficients of the approximation a*f1(theta)+b*f2(theta)+c*f3(theta)
% "Hilterman" and "two-term" have only two coefficients
%rsimp=diff(simp)./(simp(1:end-1,:)+simp(2:end,:));
rvp=diff(vp)./(vp(1:end-1,:)+vp(2:end,:));
rvs=diff(vs)./(vs(1:end-1,:)+vs(2:end,:));
rrho=diff(rho)./(rho(1:end-1,:)+rho(2:end,:));
ang=pi*angles/180;
if strcmpi(type,'Bortfeld')
aimp=rho.*vp;
raimp=diff(aimp)./(aimp(1:end-1,:)+aimp(2:end,:));
simp=rho.*vs;
% r0=raimp;
g=-2*diff(simp.*vs)./rsum(aimp.*vp);
g1=rvp;
refl=raimp(:,ones(size(angles))) + g*sin(ang).^2 + g1*tan(ang).^2;
clear aimp simp rvp rvs rrho
% pack
coeff=[raimp,g,g1];
elseif strcmpi(type,'Shuey')
pr=0.5*(vp.^2 - 2*vs.^2)./(vp.^2 - vs.^2);
prb=rsum(pr);
r0=rvp + rrho;
erp0=rvp-2*(r0+rvp).*(1-2*prb)./(1-prb);
g=erp0 + diff(pr)./(1-prb).^2;
g1=rvp;
refl=r0(:,ones(size(angles))) + g*sin(ang).^2 + g1*(tan(ang).^2 - sin(ang).^2);
clear rvp rvs rrho
% pack
coeff=[r0,g,g1];
%
elseif strcmpi(type,'Zoeppritz')
vp1=vp(1:end-1);
vp2=vp(2:end);
vs1=vs(1:end-1);
vs2=vs(2:end);
rho1=rho(1:end-1);
rho2=rho(2:end);
p_incident_ang =asin((vp1./vp1)*sin(ang));
p_transmit_ang =asin((vp2./vp1)*sin(ang));
s_reflect_ang =asin((vs1./vp1)*sin(ang));
s_transmit_ang =asin((vs2./vp1)*sin(ang));
c1=(vp1./vs1);
c2=(rho2./rho1).*(vs2./vs1).*(vs2./vs1).*(vp1./vp2);
c3=-(rho2./rho1).*(vs2./vs1).*(vp1./vs1);
c4=-(vs1./vp1);
c5=-(rho2./rho1).*(vp2./vp1);
c6=-(rho2./rho1).*(vs2./vp1);
%s=[p_incident_ang',p_transmit_ang',s_reflect_ang',s_transmit_ang']
for i=1:length(vp)-1
for j=1:length(angles)
matrix_A=[sin(p_incident_ang(i,j)), cos(s_reflect_ang(i,j)), (-1)*sin(p_transmit_ang(i,j)), cos(s_transmit_ang(i,j))
cos(p_incident_ang(i,j)), ( -1)*sin(s_reflect_ang(i,j)), cos(p_transmit_ang(i,j)), sin(s_transmit_ang(i,j))
sin(2*p_incident_ang(i,j)),c1(i)*cos(2*s_reflect_ang(i,j)), c2(i)*sin(2*p_transmit_ang(i,j)), c3(i)*cos(2*s_transmit_ang(i,j))
cos(2*s_reflect_ang(i,j)), c4(i)*sin(2*s_reflect_ang(i,j)), c5(i)*cos(2*s_transmit_ang(i,j)), c6(i)*sin(2*s_transmit_ang(i,j))];
matrix_C=[(-1)*sin(p_incident_ang(i,j)),cos(p_incident_ang(i,j)),sin(2*p_incident_ang(i,j)),(-1)*cos(2*s_reflect_ang(i,j))];
matrix_B=matrix_A\matrix_C';
temp_refl(j)=real(matrix_B(1));
end
refl(i,:)=temp_refl;
%refl
end
% %R1(i)=B(1);
clear rvp rvs rrho
% % pack
coeff=[0,0,0];
elseif strcmpi(type,'Aki')
r0=rvp + rrho;
vsb=vs(1:end-1)+vs(2:end);
vpb=vp(1:end-1)+vp(2:end);
g=rvp - 4*(vsb./vpb).^2.*(rrho+2*rvs);
g1=rvp;
refl=r0(:,ones(size(angles))) + g*sin(ang).^2 + g1*(tan(ang).^2 - sin(ang).^2);
clear rvp rvs rrho
% pack
coeff=[r0,g,g1];
elseif strcmpi(type,'Hilterman')
r0=rvp + rrho;
pr=0.5*(vp.^2 - 2*vs.^2)./(vp.^2 - vs.^2);
prb=0.5*(pr(1:end-1)+pr(2:end));
g=diff(pr)./(1-prb).^2;
refl=r0*cos(ang).^2 + g*sin(ang).^2;
clear rvp rvs rrho
% pack
coeff=[r0,g];
elseif strcmpi(type,'two-term')
r0=rvp + rrho;
pr=0.5*(vp.^2 - 2*vs.^2)./(vp.^2 - vs.^2);
prb=0.5*(pr(1:end-1)+pr(2:end));
g=diff(pr)./(1-prb).^2-r0;
refl=r0 + g*sin(ang).^2;
clear rvs rrho
% pack
coeff=[r0,g];
else
error([' Unknown type of approximation: ',type])
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -