⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 init_r3_ns3m.m

📁 计算动力学系统的分岔图
💻 M
字号:
function [x0,v0]= init_R3_NSm(mapfile,eps,x,p,ap,n,varargin)%% [x0,v0]= init_R3_NSm(mapfile,eps,x,p,ap,n,varargin)% Initializes a Neutral saddle continuation from a R3 point.% It may be initialized in two directions, eps = +/- eps, pm determined from varargin{1}.%if ~isempty(varargin)  if (varargin{1}==-1) eps=-eps;  endendglobal cds nsmds% check inputif size(ap,2)~=2    errordlg('Two active parameter are needed for a Neimark-Sacker bifurcation curve continuation');endv0=[];% initialize nsmdsnsmds.mapfile = mapfile;func_handles = feval(nsmds.mapfile);nsmds.func = func_handles{2};nsmds.Jacobian  = func_handles{3};nsmds.JacobianP = func_handles{4};nsmds.Hessians  = func_handles{5};nsmds.HessiansP = func_handles{6};nsmds.Der3      = func_handles{7};nsmds.Niterations=3*n;siz = size(func_handles,2);if siz > 9    j=1;    for i=10:siz        nsmds.user{j}= func_handles{i};        j=j+1;    endendnsmds.nphase = size(x,1);nsmds.ActiveParams = ap;nsmds.P0 = p;if size(varargin,1)>0,nsmds.BranchParams=varargin{1};else nsmds.BranchParams=[];end cds.curve = @neimarksackermap;cds.ndim = length(x)+2; %-----Defining Symbolic derivatives-----  symjac  = ~isempty(nsmds.Jacobian);  symhes  = ~isempty(nsmds.Hessians);  symDer3 = ~isempty(nsmds.Der3);  symord = 0;   if symjac, symord = 1; end  if symhes, symord = 2; end  if symDer3, symord = 3; end  cds.options.SymDerivative = symord;  symjacp  = ~isempty(nsmds.JacobianP);   symhessp = ~isempty(nsmds.HessiansP);   symordp = 0;  if symjacp,  symordp = 1; end  if symhessp, symordp = 2; end  cds.options.SymDerivativeP = symordp;%---Branch Switching Algorithm----  p = n2c(p);nphase = size(x,1);  A = nsmjac(x,p,n);					  ev1 = exp(sqrt(-1)*2*pi/3);  [X,D] = eig(A - ev1*eye(nphase));  [Y,i] = min(abs(diag(D)));  vext = X(:,i)/norm(X(:,i));  [X,D] = eig(A' - conj(ev1)*eye(nphase));  [Y,i] = min(abs(diag(D)));  wext = X(:,i)/(vext'*X(:,i));  [CO1,CO2,B1] = nf_R3m(nsmds.func,nsmds.Jacobian,nsmds.Hessians,nsmds.Der3,A,vext,wext,nphase,x,p,n);   hessIncrement =(cds.options.Increment)^(3.0/4.0);  global T1global T2global  if (cds.options.SymDerivative >= 2)    T1global=tens1(nsmds.func,nsmds.Jacobian,x,p,n);    T2global=tens2(nsmds.func,nsmds.Hessians,x,p,n);  end  A1 = nsmjacp(x,p,n);   							%jacobianp  temp = (eye(nphase)-A)\A1;							%temp=(I-A)^{INV}*J1  s1=[1;0];s2=[0;1];								%define standard vectors  xx1=x;  xit=zeros(nphase,n);xit(:,1)=x;  AA=zeros(nphase,nphase,n);  for m=2:n     xx1=feval(nsmds.func,0,xx1,p{:});     xit(:,m)=xx1;     AA(:,:,m)=nsmjac(xx1,p,1);  end    test1 = nshesspvect(xit,p,vext,AA,n)*s1;  						% A1(q,s1)   test1 = test1 + multilinear2(nsmds.func,vext,temp*s1,x,p,n,hessIncrement); 	% +B(q,temp*s1))  gamma1= wext'*test1;  test1 = nshesspvect(xit,p,vext,AA,n)*s2;						% A1(q,s2)   test1 = test1 + multilinear2(nsmds.func,vext,temp*s2,x,p,n,hessIncrement); 	% +B(q,temp*s2)  gamma2= wext'*test1;  vv = conj([gamma2;-gamma1])/(gamma1*conj(gamma2)-gamma2*conj(gamma1));  VV = [ real(vv) -imag(vv) ]*[-1 -sqrt(3);sqrt(3) -1]/3;  dir=[-2*CO1*eps^2; eps-CO2*eps^2]; 						% parameter direction  phi0 = (pi/6+CO1*eps/3);  zz = exp(sqrt(-1.0)*phi0)*exp(sqrt(-1.0)*angle(B1)/3)/abs(B1);		% phase direction  x0 = [x + 2*eps*real(zz*vext) + temp*VV*dir;nsmds.P0(ap) + VV*dir];				 	% predicted point  clear T1global T2global%-----End of branch prediction-----------------[x1,p] = rearr(x0); p = n2c(p);curvehandles = feval(cds.curve);cds.curve_func = curvehandles{1};cds.curve_options = curvehandles{3};cds.curve_jacobian =curvehandles{4};cds.curve_hessians = curvehandles{5};cds.options = feval(cds.curve_options); cds.options = contset(cds.options,'Increment',1e-5);n = nsmds.Niterations;nphase = size(x1,1);nap = length(nsmds.ActiveParams);% calculate eigenvalues and eigenvectors  jac = nsmjac(x1,p,n);  [V,D] = eig(jac);% find pair of neutral eigenvalues  d = diag(D);  idx1=0;idx2=0;  for s=1:nphase    for j=s+1:nphase      if (abs(1-d(s)*d(j))<0.01)        idx1=s;        idx2=j;      end    end  end  if idx1==0    debug('Bad Data');    return;  end   [Q,R,E]=qr([V(:,idx1) V(:,idx2)]);  nsmds.borders.v = Q(:,1:2);  [V4,D4] = eig(jac'-d(idx1)*eye(nphase));  [s4,d4] = min(abs(diag(D4)));  [V5,D5] = eig(jac'-d(idx2)*eye(nphase));  [s5,d5] = min(abs(diag(D5)));  [Q,R,E] = qr([V4(:,d5) V5(:,d4)]);  nsmds.borders.w = Q(:,1:2);  k  = (d(idx1)+d(idx2))/2;  x0 = [x0;k];% ERROR OR WARNINGRED  = jac*jac-2*k*jac+eye(nsmds.nphase);jacp = nsmjacp(x1,p,n);A = [jac-eye(nsmds.nphase) jacp zeros(nsmds.nphase,1)];[Q,R] = qr(A');Bord  = [RED nsmds.borders.w;nsmds.borders.v' zeros(2)];bunit = [zeros(nsmds.nphase,2);eye(2)];vext  = Bord\bunit;wext  = Bord'\bunit; xit=zeros(nphase,n);xit(:,1)=x; AA=zeros(nphase,nphase,n); AA(:,:,1)=nsmjac(x,p,1); xx1=x; for m=2:n     xx1=feval(nsmds.func,0,xx1,p{:});     xit(:,m)=xx1;     AA(:,:,m)=nsmjac(xx1,p,1);  end wext1=wext(1:nsmds.nphase,1)'*jac;vext1=vext(1:nsmds.nphase,1);gx1=nsvecthessvect(xit,p,vext1,wext1,AA,n);wext2=wext(1:nsmds.nphase,1)';vext2=jac*vext(1:nsmds.nphase,1);gx2=nsvecthessvect(xit,p,vext2,wext2,AA,n);wext3=-2.0*k*wext(1:nsmds.nphase,1)';vext3=vext(1:nsmds.nphase,1);gx3=nsvecthessvect(xit,p,vext3,wext3,AA,n);gxx1=gx1+gx2+gx3;wext12=wext(1:nsmds.nphase,1)'*jac;vext12=vext(1:nsmds.nphase,2);gx12=nsvecthessvect(xit,p,vext12,wext12,AA,n);wext22=wext(1:nsmds.nphase,1)';vext22=jac*vext(1:nsmds.nphase,2);gx22=nsvecthessvect(xit,p,vext22,wext22,AA,n);wext32=-2.0*k*wext(1:nsmds.nphase,1)';vext32=vext(1:nsmds.nphase,2);gx32=nsvecthessvect(xit,p,vext32,wext32,AA,n);gxx2=gx12+gx22+gx32;wext31=wext(1:nsmds.nphase,2)'*jac;vext31=vext(1:nsmds.nphase,1);gx31=nsvecthessvect(xit,p,vext31,wext31,AA,n);wext32=wext(1:nsmds.nphase,2)';vext32=jac*vext(1:nsmds.nphase,1);gx32=nsvecthessvect(xit,p,vext32,wext32,AA,n);wext33=-2.0*k*wext(1:nsmds.nphase,2)';vext33=vext(1:nsmds.nphase,1);gx33=nsvecthessvect(xit,p,vext33,wext33,AA,n);gxx3=gx31+gx32+gx33;wext41=wext(1:nsmds.nphase,2)'*jac;vext41=vext(1:nsmds.nphase,2);gx41=nsvecthessvect(xit,p,vext41,wext41,AA,n);wext42=wext(1:nsmds.nphase,2)';vext42=jac*vext(1:nsmds.nphase,2);gx42=nsvecthessvect(xit,p,vext42,wext42,AA,n);wext43=-2.0*k*wext(1:nsmds.nphase,2)';vext43=vext(1:nsmds.nphase,2);gx43=nsvecthessvect(xit,p,vext43,wext43,AA,n);gxx4=gx41+gx42+gx43;for i = 1:nsmds.nphase    gx(1,i)=gxx1(:,i);    gx(2,i)=gxx2(:,i);    gx(3,i)=gxx3(:,i);    gx(4,i)=gxx4(:,i);endgk(1,1) =2*wext(1:nsmds.nphase,1)'*jac*vext(1:nsmds.nphase,1);gk(2,1) =2*wext(1:nsmds.nphase,1)'*jac*vext(1:nsmds.nphase,2);gk(3,1) =2*wext(1:nsmds.nphase,2)'*jac*vext(1:nsmds.nphase,1);gk(4,1) =2*wext(1:nsmds.nphase,2)'*jac*vext(1:nsmds.nphase,2);wext1=wext(1:nsmds.nphase,1)'*jac;vext1=vext(1:nsmds.nphase,1);gx1=nsvecthesspvect(xit,p,vext1,wext1,AA,n);wext2=wext(1:nsmds.nphase,1)';vext2=jac*vext(1:nsmds.nphase,1);gx2=nsvecthesspvect(xit,p,vext2,wext2,AA,n);wext3=-2.0*k*wext(1:nsmds.nphase,1)';vext3=vext(1:nsmds.nphase,1);gx3=nsvecthesspvect(xit,p,vext3,wext3,AA,n);gp1=gx1+gx2+gx3;wext12=wext(1:nsmds.nphase,1)'*jac;vext12=vext(1:nsmds.nphase,2);gx12=nsvecthesspvect(xit,p,vext12,wext12,AA,n);wext22=wext(1:nsmds.nphase,1)';vext22=jac*vext(1:nsmds.nphase,2);gx22=nsvecthesspvect(xit,p,vext22,wext22,AA,n);wext32=-2.0*k*wext(1:nsmds.nphase,1)';vext32=vext(1:nsmds.nphase,2);gx32=nsvecthesspvect(xit,p,vext32,wext32,AA,n);gp2=gx12+gx22+gx32;wext31=wext(1:nsmds.nphase,2)'*jac;vext31=vext(1:nsmds.nphase,1);gx31=nsvecthesspvect(xit,p,vext31,wext31,AA,n);wext32=wext(1:nsmds.nphase,2)';vext32=jac*vext(1:nsmds.nphase,1);gx32=nsvecthesspvect(xit,p,vext32,wext32,AA,n);wext33=-2.0*k*wext(1:nsmds.nphase,2)';vext33=vext(1:nsmds.nphase,1);gx33=nsvecthesspvect(xit,p,vext33,wext33,AA,n);gp3=gx31+gx32+gx33;wext41=wext(1:nsmds.nphase,2)'*jac;vext41=vext(1:nsmds.nphase,2);gx41=nsvecthesspvect(xit,p,vext41,wext41,AA,n);wext42=wext(1:nsmds.nphase,2)';vext42=jac*vext(1:nsmds.nphase,2);gx42=nsvecthesspvect(xit,p,vext42,wext42,AA,n);wext43=-2.0*k*wext(1:nsmds.nphase,2)';vext43=vext(1:nsmds.nphase,2);gx43=nsvecthesspvect(xit,p,vext43,wext43,AA,n);gp4=gx41+gx42+gx43;for i = 1:nap    gp(1,i)=gp1(:,i);    gp(2,i)=gp2(:,i);    gp(3,i)=gp3(:,i);    gp(4,i)=gp4(:,i);endA = [A;gx gp gk]*Q;Jres = A(1+nsmds.nphase:end,1+nsmds.nphase:end)';[Q,R,E] = qr(Jres');index = [1 1;1 2;2 1;2 2];[I,J] = find(E(:,1:2));nsmds.index1 = index(I(1),:);nsmds.index2 = index(I(2),:);rmfield(cds,'options');% ---------------------------------------------------------------function [x,p] = rearr(x0)% [x,p] = rearr(x0)% Rearranges x0 into coordinates (x) and parameters (p)global cds nsmdsnap = length(nsmds.ActiveParams);p = nsmds.P0;p(nsmds.ActiveParams) = x0((nsmds.nphase+1):end);x = x0(1:nsmds.nphase);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -