📄 init_gpd_lp2m.m
字号:
function [x0,v0]= init_DPDm_LP2(mapfile,eps,x,p,ap,n,varargin)
%
% [x0,v0]= init_DPDm_LP2(mapfile,eps,x,p,ap,n)
% Initializes a fold continuation from a degenerate flip point
%
global cds lpmds
% check input
if size(ap,2)~=2
errordlg('Two active parameter are needed for a Limitpoint bifurcation curve continuation');
end
% initialize lpmds
lpmds.mapfile = mapfile;
func_handles = feval(lpmds.mapfile);
lpmds.func = func_handles{2};
lpmds.Jacobian = func_handles{3};
lpmds.JacobianP = func_handles{4};
lpmds.Hessians = func_handles{5};
lpmds.HessiansP = func_handles{6};
lpmds.Der3 = func_handles{7};
lpmds.Der4 = func_handles{8};
lpmds.Der5 = func_handles{9};
lpmds.Niterations=2*n;
siz = size(func_handles,2);
if siz > 9
j=1;
for i=10:siz
lpmds.user{j}= func_handles{i};
j=j+1;
end
end
lpmds.nphase = size(x,1);
lpmds.ActiveParams = ap;
lpmds.P0 = p;
if size(varargin,1)>0,lpmds.BranchParams=varargin{1};else lpmds.BranchParams=[];end
cds.curve = @limitpointmap;
cds.ndim = length(x)+2;
%-----Defining Symbolic derivatives-----
symjac = ~isempty(lpmds.Jacobian);
symhes = ~isempty(lpmds.Hessians);
symDer3 = ~isempty(lpmds.Der3);
symDer4 = ~isempty(lpmds.Der4);
symDer5 = ~isempty(lpmds.Der5);
symord = 0;
if symjac, symord = 1; end
if symhes, symord = 2; end
if symDer3, symord = 3; end
if symDer4, symord = 4; end
if symDer5, symord = 5; end
cds.options.SymDerivative = symord;
symjacp = ~isempty(lpmds.JacobianP);
symhessp = ~isempty(lpmds.HessiansP);
symordp = 0;
if symjacp, symordp = 1; end
if symhessp, symordp = 2; end
cds.options.SymDerivativeP = symordp;
%----------------------
p0 = p;p = n2c(p);
global T1global T2global T3global T4global T5global
if (cds.options.SymDerivative >=5)
T1global=tens1(lpmds.func,lpmds.Jacobian,x,p,n);
T2global=tens2(lpmds.func,lpmds.Hessians,x,p,n);
T3global=tens3(lpmds.func,lpmds.Der3,x,p,n);
T4global=tens4(lpmds.func,lpmds.Der4,x,p,n);
T5global=tens5(lpmds.func,lpmds.Der5,x,p,n);
end
hessIncrement =(cds.options.Increment)^(3.0/4.0);
ten3Increment =(cds.options.Increment)^(3.0/5.0);
ten4Increment =(cds.options.Increment)^(3.0/6.0);
ten5Increment =(cds.options.Increment)^(3.0/7.0);
%---Branch Switching Algorithm----
nphase = size(x,1);
A = lpmjac(x,p,n);
[X,D] = eig(A+eye(nphase));
[Y,i] = min(abs(diag(D)));
vext = X(:,i)/norm(X(:,i));
[X,D] = eig(A'+eye(nphase));
[Y,i] = min(abs(diag(D)));
wext = X(:,i)/(X(:,i)'*vext);
c2 = nf_DPDm(lpmds.func,lpmds.Jacobian,lpmds.Hessians,lpmds.Der3,lpmds.Der4,lpmds.Der5,A,vext,wext,nphase,x,p,n);
A1 = lpmjacp(x,p,n); %jacobianp
temp = (eye(nphase)-A)\A1; %temp=(I-A)^{INV}*J1
s1=[1;0];s2=[0;1];
AA=zeros(nphase,nphase,n);
wwt(:,:,n)=eye(nphase);
x1=x;
xit=zeros(nphase,n);xit(:,1)=x1;
AA(:,:,1)=lpmjac(x1,p,1);
for m=2:n
x1=feval(lpmds.func,0,x1,p{:});
xit(:,m)=x1;
AA(:,:,m)=lpmjac(x1,p,1);
end%define standard vectors
test1 = lphesspvect(xit,p,vext,AA,n)*s1; % A1(q,s1)
test1 = test1 + multilinear2(lpmds.func,vext,temp*s1,x,p,n,hessIncrement); % +B(q,temp*s1)
gamma1= wext'*test1;
test2 = lphesspvect(xit,p,vext,AA,n)*s2; % A1(q,s2)
test2 = test2 + multilinear2(lpmds.func,vext,temp*s2,x,p,n,hessIncrement); % +B(q,temp*s2)
gamma2= wext'*test2;
s1 = -[gamma1;gamma2]/(gamma1^2 + gamma2^2); % new orthogonal basis
s2 = [-gamma2;gamma1];
h200 = (eye(nphase)-A)\(multilinear2(lpmds.func,vext,vext,x,p,n,hessIncrement));
Abor = [A+eye(nphase) vext ; wext' 0];
hh110 = Abor\[(gamma1*test1 + gamma2*test2)/(gamma1^2 + gamma2^2)-vext ; 0];
hh101 = Abor\[(gamma2*test1 - gamma1*test2) ; 0];
hh110 = hh110(1:nphase);hh101 = hh101(1:nphase);
%h110 = hh110 +delta1*hh101; h101 = delta2*hh101;
%
%Computation of B_1 and C_1 vectors, symbolic derivatives have to be redefined
%since they are fixed with parameters. When numerically differentiating we scale
%s1 and s2 to norm 1.
%temp1 = B_1(q,q,s1); temp3 = C_1(q,q,q,s1) + 3 B_1(q,h200,s1);
%temp2 = B_1(q,q,s2); temp4 = C_1(q,q,q,s2) + 3 B_1(q,h200,s2);
%---------------------------------------------
%wrt to s1
p1 =p0;p1(ap) = p1(ap) + cds.options.Increment*s1/norm(s1);p1=n2c(p1);
if (cds.options.SymDerivative >=3)
T1global=tens1(lpmds.func,lpmds.Jacobian,x,p1,n);
T2global=tens2(lpmds.func,lpmds.Hessians,x,p1,n);
T3global=tens3(lpmds.func,lpmds.Der3,x,p1,n);
end
temp1 = multilinear2(lpmds.func,vext,vext,x,p1,n,hessIncrement);
temp3 = multilinear3(lpmds.func,vext,vext,vext,x,p1,n,ten3Increment);
temp3 = temp3 + 3.0*multilinear2(lpmds.func,vext,h200,x,p1,n,hessIncrement);
p1 =p0;p1(ap) = p1(ap) - cds.options.Increment*s1/norm(s1);p1=n2c(p1);
if (cds.options.SymDerivative >=3)
T1global=tens1(lpmds.func,lpmds.Jacobian,x,p1,n);
T2global=tens2(lpmds.func,lpmds.Hessians,x,p1,n);
T3global=tens3(lpmds.func,lpmds.Der3,x,p1,n);
end
temp1 = temp1 - multilinear2(lpmds.func,vext,vext,x,p1,n,hessIncrement);
temp3 = temp3 - multilinear3(lpmds.func,vext,vext,vext,x,p1,n,ten3Increment);
temp3 = temp3 - 3.0*multilinear2(lpmds.func,vext,h200,x,p1,n,hessIncrement);
temp1 = temp1*norm(s1)/(2.0*cds.options.Increment);
temp3 = temp3*norm(s1)/(2.0*cds.options.Increment);
%wrt to s2
p1 =p0;p1(ap) = p1(ap) + cds.options.Increment*s2/norm(s2);p1=n2c(p1);
if (cds.options.SymDerivative >=3)
T1global=tens1(lpmds.func,lpmds.Jacobian,x,p1,n);
T2global=tens2(lpmds.func,lpmds.Hessians,x,p1,n);
T3global=tens3(lpmds.func,lpmds.Der3,x,p1,n);
end
temp2 = multilinear2(lpmds.func,vext,vext,x,p1,n,hessIncrement);
temp4 = multilinear3(lpmds.func,vext,vext,vext,x,p1,n,ten3Increment);
temp4 = temp4 + 3.0*multilinear2(lpmds.func,vext,h200,x,p1,n,hessIncrement);
p1 =p0;p1(ap) = p1(ap) - cds.options.Increment*s2/norm(s2);p1=n2c(p1);
if (cds.options.SymDerivative >=3)
T1global=tens1(lpmds.func,lpmds.Jacobian,x,p1,n);
T2global=tens2(lpmds.func,lpmds.Hessians,x,p1,n);
T3global=tens3(lpmds.func,lpmds.Der3,x,p1,n);
end
temp2 = temp2 - multilinear2(lpmds.func,vext,vext,x,p1,n,hessIncrement);
temp4 = temp4 - multilinear3(lpmds.func,vext,vext,vext,x,p1,n,ten3Increment);
temp4 = temp4 - 3.0*multilinear2(lpmds.func,vext,h200,x,p1,n,hessIncrement);
temp2 = temp2*norm(s2)/(2.0*cds.options.Increment);
temp4 = temp4*norm(s2)/(2.0*cds.options.Increment);;
%wrt to original parameter
if (cds.options.SymDerivative >=3)
T1global=tens1(lpmds.func,lpmds.Jacobian,x,p1,n);
T2global=tens2(lpmds.func,lpmds.Hessians,x,p1,n);
T3global=tens3(lpmds.func,lpmds.Der3,x,p1,n);
end
%--------------------------------------------
%Continue
test1 = lphesspvect(xit,p,h200,AA,n)*s1; % A1(h200,s1)
test1 = test1 + 2*multilinear2(lpmds.func,vext,hh110,x,p,n,hessIncrement); %+2B(q,hh110)
test1 = test1 + multilinear2(lpmds.func,h200,temp*s1,x,p,n,hessIncrement); %+ B(h200,h010)
test1 = test1 + multilinear3(lpmds.func,vext,vext,temp*s1,x,p,n,ten3Increment); %+ C(q,q,h010)
test1 = test1 + temp1; % see above for temp1
hh210 = (A-eye(nphase))\(2*h200-test1);
test2 = lphesspvect(xit,p,h200,AA,n)*s2; % A1(h200,s2)
test2 = test2 + 2*multilinear2(lpmds.func,vext,hh101,x,p,n,hessIncrement); %+2B(q,hh101)
test2 = test2 + multilinear2(lpmds.func,h200,temp*s2,x,p,n,hessIncrement); %+ B(h200,h001)
test2 = test2 + multilinear3(lpmds.func,vext,temp*s2,vext,x,p,n,ten3Increment); %+ C(q,q,h001)
test2 = test2 + temp2; % see above for temp2
hh201 = (eye(nphase)-A)\test2;
%h210 = (A-I)\(2h200-test1-delta1*test2) = hh210 + delta1*hh201
%h201 = (A-I)\(-delta2*test2) = delta2*hh201
RHS3 = multilinear3(lpmds.func,vext,vext,vext,x,p,n,ten3Increment); % C(q,q,q)
RHS3 = RHS3 + 3.0*multilinear2(lpmds.func,vext,h200,x,p,n,hessIncrement); % +3B(q,h200)
a = wext'*RHS3/6.0;
h300 = Abor\[6.0*a*vext - RHS3; 0];h300 = h300(1:nphase);
%----
test3 = lphesspvect(xit,p,h300,AA,n)*s1; % A1(h300,s1)
test3 = test3 + multilinear4(lpmds.func,vext,vext,vext,temp*s1,x,p,n,ten4Increment); %+ D(q,q,q,h010)
test3 = test3 + 3.0*multilinear3(lpmds.func,vext,vext,hh110,x,p,n,ten3Increment); %+3C(q,q,hh110)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -