⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 osr.res

📁 该程序用fortran语言编写
💻 RES
字号:
                    ******OPTIMAL SUBSET REGRESSION******

                    MEANS OF X AND Y
    132.35  162.77  116.09   78.7711541.70   61.63


                     1ORDER REGRESSION SET 
     X 1

                              REGRESSION EQUATION
  Y=    63.876
+     -.017X 1

     DEPARTURE SQUARE SUM =       478.0475
     REGRESSION SQUARE SUM=        83.3028
     RESIDUES SQUARE SUM=       394.7446
     MULTIPLE CORRELATION COEFFICIENT=       .42


                    CONTINGENCY TABLE
        3   5   1

        4   2   7

        2   6  12



     S1=      9.53     S2=      7.32     CSC=     16.85


     MEAN--Y=     61.63  RMSE=      3.03

                    FITTING
     62.13   58.42   62.74   60.38   61.07   59.20   60.95   63.01   61.60   63.13
     62.47   59.90   61.79   61.80   61.21   60.50   63.08   61.21   61.85   63.15
     63.62   63.28   63.11   56.81   61.09   63.66   61.77   62.42   59.92   60.07
     61.72   61.60   60.58   61.26   62.19   61.80   61.84   62.57   62.18   63.13
     61.97   62.77   61.06

                    FORECAST
     62.21   63.01


                     2ORDER REGRESSION SET 
     X 1
     X 3

                              REGRESSION EQUATION
  Y=    58.080
+     -.015X 1
+      .047X 3

     DEPARTURE SQUARE SUM =       478.0475
     REGRESSION SQUARE SUM=       106.8814
     RESIDUES SQUARE SUM=       371.1660
     MULTIPLE CORRELATION COEFFICIENT=       .47


                    CONTINGENCY TABLE
        3   3   1

        5   6   7

        1   4  12



     S1=      9.02     S2=      9.17     CSC=     18.19


     MEAN--Y=     61.63  RMSE=      2.94

                    FITTING
     62.48   59.50   61.36   59.54   60.15   60.37   61.94   63.25   62.41   62.36
     62.45   59.55   60.77   61.21   60.45   62.01   64.97   60.74   61.77   63.37
     64.26   63.49   62.39   56.82   61.06   64.76   61.70   62.26   59.38   59.75
     60.71   61.08   59.95   61.02   62.21   62.68   61.05   62.16   62.77   63.64
     62.59   62.57   61.08

                    FORECAST
     61.14   61.83


                     3ORDER REGRESSION SET 
     X 1
     X 2
     X 3

                              REGRESSION EQUATION
  Y=    69.912
+     -.012X 1
+     -.074X 2
+      .046X 3

     DEPARTURE SQUARE SUM =       478.0475
     REGRESSION SQUARE SUM=       126.7611
     RESIDUES SQUARE SUM=       351.2863
     MULTIPLE CORRELATION COEFFICIENT=       .51


                    CONTINGENCY TABLE
        3   5   2

        5   5   5

        1   3  13



     S1=     11.30     S2=     10.61     CSC=     21.90


     MEAN--Y=     61.63  RMSE=      2.86

                    FITTING
     63.34   59.28   62.29   60.13   59.65   60.16   61.94   62.47   62.30   62.47
     62.58   60.44   60.67   61.32   59.48   62.24   65.85   61.17   62.02   63.83
     63.66   64.00   62.50   56.89   61.14   64.07   62.92   61.07   58.40   59.41
     61.14   62.86   60.06   60.25   61.80   62.61   60.34   62.06   62.42   63.28
     63.91   61.47   60.12

                    FORECAST
     60.82   62.19


                     4ORDER REGRESSION SET 
     X 1
     X 2
     X 3
     X 5

                              REGRESSION EQUATION
  Y=    69.129
+     -.012X 1
+     -.060X 2
+      .047X 3
+      .000X 5

     DEPARTURE SQUARE SUM =       478.0475
     REGRESSION SQUARE SUM=       135.6364
     RESIDUES SQUARE SUM=       342.4111
     MULTIPLE CORRELATION COEFFICIENT=       .53


                    CONTINGENCY TABLE
        3   4   2

        4   2   6

        2   7  12



     S1=      6.31     S2=     11.07     CSC=     17.38


     MEAN--Y=     61.63  RMSE=      2.82

                    FITTING
     64.82   59.38   61.99   59.42   59.97   59.86   62.63   62.51   62.16   62.51
     62.54   61.02   60.91   61.43   58.93   61.72   65.88   61.62   61.13   63.30
     64.27   63.22   62.50   56.72   61.01   63.74   62.52   60.99   58.35   59.68
     61.46   62.85   60.36   60.78   61.79   62.58   60.30   62.24   63.06   63.70
     63.53   61.08   59.52

                    FORECAST
     60.96   62.52


                     5ORDER REGRESSION SET 
     X 1
     X 2
     X 3
     X 4
     X 5

                              REGRESSION EQUATION
  Y=    69.375
+     -.012X 1
+     -.059X 2
+      .048X 3
+     -.004X 4
+      .000X 5

     DEPARTURE SQUARE SUM =       478.0475
     REGRESSION SQUARE SUM=       137.4395
     RESIDUES SQUARE SUM=       340.6080
     MULTIPLE CORRELATION COEFFICIENT=       .54


                    CONTINGENCY TABLE
        3   4   2

        4   2   6

        2   7  12



     S1=      6.31     S2=     10.93     CSC=     17.24


     MEAN--Y=     61.63  RMSE=      2.81

                    FITTING
     64.96   59.35   62.16   59.56   60.26   59.94   62.44   62.12   61.75   62.23
     62.44   61.11   61.08   61.63   59.12   61.94   66.09   61.59   60.94   63.19
     64.29   63.25   62.57   56.72   61.15   64.03   62.74   61.20   58.23   59.35
     61.18   62.61   60.23   60.86   61.93   62.83   60.54   62.47   63.06   63.48
     63.27   60.74   59.35

                    FORECAST
     61.04   62.74
          **********************************************

     OPTIMAL REGRESSION SET IS--  3

     X 1
     X 2
     X 3

                    THE FINAL RESULT OF FITTING AND FORECAST
     RMSE=           2.86
      NO.      REG.      OBS.
         1     63.34     65.00
         2     59.28     60.00
         3     62.29     61.00
         4     60.13     61.00
         5     59.65     55.00
         6     60.16     57.00
         7     61.94     61.00
         8     62.47     64.00
         9     62.30     63.00
        10     62.47     63.00
        11     62.58     65.00
        12     60.44     62.00
        13     60.67     66.00
        14     61.32     62.00
        15     59.48     57.00
        16     62.24     64.00
        17     65.85     67.00
        18     61.17     62.00
        19     62.02     64.00
        20     63.83     64.00
        21     63.66     63.00
        22     64.00     64.00
        23     62.50     55.00
        24     56.89     57.00
        25     61.14     61.00
        26     64.07     63.00
        27     62.92     63.00
        28     61.07     63.00
        29     58.40     55.00
        30     59.41     60.00
        31     61.14     62.00
        32     62.86     63.00
        33     60.06     63.00
        34     60.25     58.00
        35     61.80     66.00
        36     62.61     63.00
        37     60.34     67.00
        38     62.06     59.00
        39     62.42     63.00
        40     63.28     67.00
        41     63.91     56.00
        42     61.47     57.00
        43     60.12     59.00
        44     60.82       .00
        45     62.19       .00

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -