⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 reprerr.pl

📁 sparse bundle ajustment的源码
💻 PL
字号:
#!/usr/bin/perl################################################################################### ##  Perl script for computing the reprojection error corresponding to a##  given reconstruction. Currently, projective and quaternion-based euclidean##  reconstructions are supported. More reconstruction types can be added by##  supplying appropriate camera matrix generation routines (i.e. CamMat_Generate)##  Copyright (C) 2005  Manolis Lourakis (lourakis@ics.forth.gr)##  Institute of Computer Science, Foundation for Research & Technology - Hellas##  Heraklion, Crete, Greece.####  This program is free software; you can redistribute it and/or modify##  it under the terms of the GNU General Public License as published by##  the Free Software Foundation; either version 2 of the License, or##  (at your option) any later version.####  This program is distributed in the hope that it will be useful,##  but WITHOUT ANY WARRANTY; without even the implied warranty of##  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the##  GNU General Public License for more details.##################################################################################################################################################################### Initializations$usage="Usage is $0 -e|-i|-p [-s,-h] <cams file> <pts file> [<calib file>]";$help="-e specifies a quaternion-based Euclidean reconstruction with fixed intrinsics,\n-i a Euclidean reconstruction with varying intrinsics and -p a projective one.\n"."-s computes the average *squared* reprojection error.";use constant EUCBA => 0; # Euclidean BA, fixed intrinsicsuse constant EUCIBA => 1; # Euclidean BA, varying intrinsicsuse constant PROJBA => 2; # Projective BA$cnp=$pnp=0;$camsfile=$ptsfile=$calfile="";$CamMat_Generate=\&dont_know;################################################################################## Basic arguments parsinguse Getopt::Std;getopts("eipsh", \%opt) or die "$usage\n";die "$0 help: Compute the average reprojection error for some reconstruction.\n$usage\n$help\n" if($opt{h});if($opt{e}+$opt{i}+$opt{p}!=1){    die "$0: Only one of -e, -p can be specified!\n";} elsif($opt{e}){    $batype=EUCBA;} elsif($opt{i}){    $batype=EUCIBA;} elsif($opt{p}){    $batype=PROJBA;}$squared=$opt{s}? 1 : 0;################################################################################## Initializations depending on reconstruction typeif($batype==EUCBA){    $cnp=7; $pnp=3;    die "$0: Cameras, points, or calibration file is missing!\n$usage" if(@ARGV<3);    die "$0: Too many arguments!\n$usage" if(@ARGV>3);    $camsfile=$ARGV[0];    $ptsfile=$ARGV[1];    $calfile=$ARGV[2];    $CamMat_Generate=\&PfromRtK;}elsif($batype==EUCIBA){    $cnp=7+5; $pnp=3;    die "$0: Cameras or points file is missing!\n$usage" if(@ARGV<2);    die "$0: Too many arguments!\n$usage" if(@ARGV>2);    $camsfile=$ARGV[0];    $ptsfile=$ARGV[1];    $CamMat_Generate=\&PfromRtVarK;}elsif($batype==PROJBA){     $cnp=12; $pnp=4;    die "$0: Cameras or points file is missing!\n$usage" if(@ARGV<2);    die "$0: Too many arguments!\n$usage" if(@ARGV>2);    $camsfile=$ARGV[0];    $ptsfile=$ARGV[1];    $CamMat_Generate=\&nop;}else{    die "Unknown BA type \"$batype\" specified!\n";}die "$0: Do not know how to handle $pnp parameters per point!\n" if($pnp!=3 && $pnp!=4);################################################################################## Main code for computing the reprojection error.# NOTE: all 2D arrays are stored in row-major order as vectors@camPoses=(); # array of arrays storing each camera's pose; each element is of size $cnp@threeDpts=(); # array of arrays storing the reconstructed 3D points; each element is of size $pnp@twoDtrajs=(); # array of hashes storing the 2D trajectory correponding to reconstructed 3D points.               # The hash key is the frame number@trajsFrames=(); # array of arrays storing the frame numbers corresponding to each trajectory.                 # The first number is the total number of frames, then follow the individual frame                 # numbers: [nframes, fr_i, fr_j, ..., fr_k]@camCal=();    # 3x3 array for storing the camera intrinsic calibration# read calibration file, if there is one  if(length($calfile)>0){    if(not open(CAL, $calfile)){	    print STDERR "cannot open file $calfile: $!\n";	    exit(1);    }    for($i=0; $i<3; ){ # $i gets incremented at the bottom of the loop      $line=<CAL>;      if($line=~/\r\n$/){ # CR+LF        chop($line); chop($line);      }      else{        chomp($line);      }      next if($line=~/^#.+/); # skip comments      @columns=split(" ", $line);      die "line \"$line\" in $calfile does not contain exactly 3 numbers [$#columns+1]!\n" if($#columns+1!=3);      $camCal[$i*3]=$columns[0]; $camCal[$i*3+1]=$columns[1]; $camCal[$i*3+2]=$columns[2];      $i++;    }    close(CAL);  }# read cameras file  if(not open(CAMS, $camsfile)){	  print STDERR "cannot open file $camsfile: $!\n";	  exit(1);  }  $ncams=0;  while($line=<CAMS>){    if($line=~/\r\n$/){ # CR+LF      chop($line); chop($line);    }    else{      chomp($line);    }    next if($line=~/^#.+/); # skip comments    @columns=split(" ", $line);    #next if($#columns==-1); # skip empty lines    die "line \"$line\" in $camsfile does not contain exactly $cnp numbers [$#columns+1]!\n" if($cnp!=$#columns+1);    @pose=();    for($i=0; $i<$cnp; $i++){      $pose[$i]=$columns[$i];    }    $camPoses[$ncams]=$CamMat_Generate->($ncams, [@pose], [@camCal]);    $ncams++;  }  close(CAMS);  printf "Read %d cameras\n", scalar(@camPoses);# read points file  if(not open(PTS, $ptsfile)){	  print STDERR "cannot open file $ptsfile: $!\n";	  exit(1);  }  $npts=0;  $trajno=0;  while($line=<PTS>){	  $npts++;    if($line=~/\r\n$/){ # CR+LF      chop($line); chop($line);    }    else{      chomp($line);    }    next if($line=~/^#.+/); # skip comments    @columns=split(" ", $line);    die "line \"$line\" in $ptsfile contains less than $pnp numbers [$#columns+1]!\n" if($pnp>$#columns+1);    @recpt=();    for($i=0; $i<$pnp; $i++){      $recpt[$i]=$columns[$i];    }    $nframes=$columns[$pnp];    $i=$pnp+1+$nframes*3; # 3 numbers per image projection: (i.e. imgid, x, y)    if($i!=$#columns+1){      die "line \"$line\" in $ptsfile does not contain exactly the $i numbers required for a 3D point with $nframes 2D projections [$#columns+1]!\n";    }    %traj=();    @theframes=($nframes);    for($i=0, $j=$pnp+1; $i<$nframes; $i++, $j+=3){      $traj{$columns[$j]}=[$columns[$j+1], $columns[$j+2]];      push @theframes, $columns[$j];#     printf "%d: %d %.6g %.6g\n", $j, $columns[$j], $columns[$j+1], $columns[$j+2];    }    $threeDpts[$trajno]=[@recpt];    $twoDtrajs[$trajno]={%traj};    $trajsFrames[$trajno++]=[@theframes];  }  close(PTS);  printf "Read %d 3D points \& trajectories\n", scalar(@threeDpts);# Data file has now been read. Following fragment shows how it can be printedif(0){  for($i=0; $i<scalar(@threeDpts); $i++){    for($j=0; $j<$pnp; $j++){      printf "%.6g ", $threeDpts[$i][$j];    }    printf "%d ", $trajsFrames[$i][0];    for($j=0; $j<$trajsFrames[$i][0]; $j++){      $fr=$trajsFrames[$i][$j+1];      if(defined($twoDtrajs[$i]{$fr})){        printf "%d %.6g %.6g ", $fr, $twoDtrajs[$i]{$fr}[0], $twoDtrajs[$i]{$fr}[1];      }    }    print "\n";  }}# compute reprojection error  unless ($batype==EUCBA || $batype==EUCIBA || $batype==PROJBA){    die "current implementation of reprError() cannot handle supplied reconstruction data!\n";  }  $toterr=0.0;  $totprojs=0.0;  @error=();  for($fr=0; $fr<$ncams; $fr++){    $error[$fr]=0.0;    for($i=$j=0; $i<scalar(@threeDpts); $i++){      if(defined($twoDtrajs[$i]{$fr})){        $theerr=&reprError($twoDtrajs[$i]{$fr}, @camPoses[$fr], @threeDpts[$i], $pnp);        $theerr=sqrt($theerr) if(!$squared);        $error[$fr]+=$theerr;#        printf "@@@ point %d, camera %d: %g\n", $i, $fr, $theerr;        $j++;      }    }    printf "Mean error for camera %d [%d projections] is %g\n", $fr, $j, $error[$fr]/$j;    $toterr+=$error[$fr];    $totprojs+=$j;  }  printf "\nMean error for the whole sequence [%d projections]  is %g\n", $totprojs, $toterr/$totprojs;################################################################################## Misc routines# compute the SQUARED reprojection error |x-xx|^2  with xx=P*Xsub reprError{  my ($x, $P, $X, $pnp)=@_;  # error checking  unless (@_==4 && ref($x) eq 'ARRAY' && ref($P) eq 'ARRAY' && ref($X) eq 'ARRAY'){    die "usage: reprError ARRAYREF1 ARRAYREF2 ARRAYREF3 pnp";  }  my @xx=();  my $k;  # compute the projection in xx  for($k=0; $k<3; $k++){    $xx[$k]=$P->[$k*4]*$X->[0] + $P->[$k*4+1]*$X->[1] + $P->[$k*4+2]*$X->[2] + $P->[$k*4+3]*(($pnp==4)? $X->[3] : 1.0);  }  $xx[0]/=$xx[2];  $xx[1]/=$xx[2];# printf "[%g %g -- %g %g] ", $x->[0], $x->[1], $xx[0], $xx[1];  return ($x->[0]-$xx[0])*($x->[0]-$xx[0]) + ($x->[1]-$xx[1])*($x->[1]-$xx[1]);}################################################################################## Camera matrix generation routinessub dont_know {  my ($camid, $camparms)=@_;  die "Don't know how to generate a projection matrix for camera $camid from the supplied camera parameters!\n";  return $camparms;}# Return as issub nop {  my ($camid, $camparms)=@_;  return $camparms;}# Compute P as K[R|t]. R is specified by the first 4 elements of $camparms, while t corresponds to the last 3 onessub PfromRtK {  my ($camid, $camparms, $calparams)=@_;  my $x, $y, $z, $w, $xx, $xy, $xz, $xw, $yy, $yz, $yw, $zz, $zw, $ww, $i, $j, $k;  my @R=(), @P=(); # 3x3 & 3x4 resp.# compute the rotation matrix for q=(x, y, z, w);# see also http://www.gamedev.net/reference/articles/article1095.asp (but note that q=(w, x, y, z) there!)  $x=$camparms->[0]; $y=$camparms->[1];  $z=$camparms->[2]; $w=$camparms->[3];  $xx=$x*$x; $xy=$x*$y; $xz=$x*$z; $xw=$x*$w;  $yy=$y*$y; $yz=$y*$z; $yw=$y*$w;  $zz=$z*$z; $zw=$z*$w; $ww=$w*$w;  $R[0]=$xx+$yy - ($zz+$ww); $R[1]=2.0*($yz-$xw);       $R[2]=2.0*($yw+$xz);  $R[3]=2.0*($yz+$xw);       $R[4]=$xx+$zz - ($yy+$ww); $R[5]=2.0*($zw-$xy);  $R[6]=2.0*($yw-$xz);       $R[7]=2.0*($zw+$xy);       $R[8]=$xx+$ww - ($yy+$zz);#print "@R\n\n";# compute the matrix-matrix & matrix-vector products  for($i=0; $i<3; $i++){    for($j=0; $j<3; $j++){      for($k=0, $sum=0.0; $k<3; $k++){        $sum+=$calparams->[$i*3+$k]*$R[$k*3+$j];      }      $P[$i*4+$j]=$sum;    }    for($j=0, $sum=0.0; $j<3; $j++){      $sum+=$calparams->[$i*3+$j]*$camparms->[4+$j];    }    $P[$i*4+3]=$sum;  }  return [@P];}# Compute P as K[R|t]. K is specified by the first 5 elements of $camparms, while R and t correspond to the next 4 & 3 elements, respectivelysub PfromRtVarK {  my ($camid, $camparms)=@_;  my @K=(), @poseparams=(), $size, $i;  # setup the intrinsics matrix from the 5 first elements  $K[0]=$camparms->[0]; $K[1]=$camparms->[4];                $K[2]=$camparms->[1];  $K[3]=0.0;            $K[4]=$camparms->[3]*$camparms->[0]; $K[5]=$camparms->[2];  $K[6]=0.0;            $K[7]=0.0;                           $K[8]=1.0;  $size=scalar(@$camparms);  for($i=5; $i<$size; $i++){    $poseparams[$i-5]=$camparms->[$i];  }  &PfromRtK($camid, [@poseparams], [@K]);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -