📄 sba_levmar_wrap.c
字号:
(*proj)(j, rcsubs[i], paj, pxij, proj_adata); // evaluate Q in pxij } }}/* Given a parameter vector p made up of the parameters of m cameras, compute in jac * the jacobian of the predicted measurements, i.e. the jacobian of the projections of 3D points in the m images. * The jacobian is returned in the order (A_11, ..., A_1m, ..., A_n1, ..., A_nm), * where A_ij=dx_ij/db_j (see HZ). * Caller supplies rcidxs and rcsubs which can be used as working memory. * Notice that depending on idxij, some of the A_ij might be missing * */static void sba_mot_Qs_jac(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *jac, void *adata){ register int i, j; int cnp, mnp; double *paj, *pAij; //int n; int m, nnz, Asz, idx; struct wrap_mot_data_ *wdata; void (*projac)(int j, int i, double *aj, double *Aij, void *projac_adata); void *projac_adata; wdata=(struct wrap_mot_data_ *)adata; cnp=wdata->cnp; mnp=wdata->mnp; projac=wdata->projac; projac_adata=wdata->adata; //n=idxij->nr; m=idxij->nc; Asz=mnp*cnp; for(j=0; j<m; ++j){ /* j-th camera parameters */ paj=p+j*cnp; nnz=sba_crsm_col_elmidxs(idxij, j, rcidxs, rcsubs); /* find nonzero hx_ij, i=0...n-1 */ for(i=0; i<nnz; ++i){ idx=idxij->val[rcidxs[i]]; pAij=jac + idx*Asz; // set pAij to point to A_ij (*projac)(j, rcsubs[i], paj, pAij, projac_adata); // evaluate dQ/da in pAij } }}/* Given a parameter vector p made up of the parameters of m cameras, compute in jac the jacobian * of the predicted measurements, i.e. the jacobian of the projections of 3D points in the m images. * The jacobian is approximated with the aid of finite differences and is returned in the order * (A_11, ..., A_1m, ..., A_n1, ..., A_nm), where A_ij=dx_ij/da_j (see HZ). * Notice that depending on idxij, some of the A_ij might be missing * * Problem-specific information is assumed to be stored in a structure pointed to by "dat". * * NOTE: This function is provided mainly for illustration purposes; in case that execution time is a concern, * the jacobian should be computed analytically */static void sba_mot_Qs_fdjac( double *p, /* I: current parameter estimate, (m*cnp)x1 */ struct sba_crsm *idxij, /* I: sparse matrix containing the location of x_ij in hx */ int *rcidxs, /* work array for the indexes of nonzero elements of a single sparse matrix row/column */ int *rcsubs, /* work array for the subscripts of nonzero elements in a single sparse matrix row/column */ double *jac, /* O: array for storing the approximated jacobian */ void *dat) /* I: points to a "wrap_mot_data_" structure */{ register int i, j, ii, jj; double *paj; register double *pA; //int n; int m, nnz, Asz; double tmp; register double d, d1; struct wrap_mot_data_ *fdjd; void (*proj)(int j, int i, double *aj, double *xij, void *adata); double *hxij, *hxxij; int cnp, mnp; void *adata; /* retrieve problem-specific information passed in *dat */ fdjd=(struct wrap_mot_data_ *)dat; proj=fdjd->proj; cnp=fdjd->cnp; mnp=fdjd->mnp; adata=fdjd->adata; //n=idxij->nr; m=idxij->nc; Asz=mnp*cnp; /* allocate memory for hxij, hxxij */ if((hxij=malloc(2*mnp*sizeof(double)))==NULL){ fprintf(stderr, "memory allocation request failed in sba_mot_Qs_fdjac()!\n"); exit(1); } hxxij=hxij+mnp; /* compute A_ij */ for(j=0; j<m; ++j){ paj=p+j*cnp; // j-th camera parameters nnz=sba_crsm_col_elmidxs(idxij, j, rcidxs, rcsubs); /* find nonzero A_ij, i=0...n-1 */ for(jj=0; jj<cnp; ++jj){ /* determine d=max(SBA_DELTA_SCALE*|paj[jj]|, SBA_MIN_DELTA), see HZ */ d=(double)(SBA_DELTA_SCALE)*paj[jj]; // force evaluation d=FABS(d); if(d<SBA_MIN_DELTA) d=SBA_MIN_DELTA; d1=1.0/d; /* invert so that divisions can be carried out faster as multiplications */ for(i=0; i<nnz; ++i){ (*proj)(j, rcsubs[i], paj, hxij, adata); // evaluate supplied function on current solution tmp=paj[jj]; paj[jj]+=d; (*proj)(j, rcsubs[i], paj, hxxij, adata); paj[jj]=tmp; /* restore */ pA=jac + idxij->val[rcidxs[i]]*Asz; // set pA to point to A_ij for(ii=0; ii<mnp; ++ii) pA[ii*cnp+jj]=(hxxij[ii]-hxij[ii])*d1; } } } free(hxij);}/* BUNDLE ADJUSTMENT FOR STRUCTURE PARAMETERS ONLY *//* Given a parameter vector p made up of the 3D coordinates of n points, compute in * hx the prediction of the measurements, i.e. the projections of 3D points in the m images. The measurements * are returned in the order (hx_11^T, .. hx_1m^T, ..., hx_n1^T, .. hx_nm^T)^T, where hx_ij is the predicted * projection of the i-th point on the j-th camera. * Caller supplies rcidxs and rcsubs which can be used as working memory. * Notice that depending on idxij, some of the hx_ij might be missing * */static void sba_str_Qs(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *hx, void *adata){ register int i, j; int pnp, mnp; double *pbi, *pxij; //int n; int m, nnz; struct wrap_str_data_ *wdata; void (*proj)(int j, int i, double *bi, double *xij, void *proj_adata); void *proj_adata; wdata=(struct wrap_str_data_ *)adata; pnp=wdata->pnp; mnp=wdata->mnp; proj=wdata->proj; proj_adata=wdata->adata; //n=idxij->nr; m=idxij->nc; for(j=0; j<m; ++j){ nnz=sba_crsm_col_elmidxs(idxij, j, rcidxs, rcsubs); /* find nonzero hx_ij, i=0...n-1 */ for(i=0; i<nnz; ++i){ pbi=p + rcsubs[i]*pnp; pxij=hx + idxij->val[rcidxs[i]]*mnp; // set pxij to point to hx_ij (*proj)(j, rcsubs[i], pbi, pxij, proj_adata); // evaluate Q in pxij } }}/* Given a parameter vector p made up of the 3D coordinates of n points, compute in * jac the jacobian of the predicted measurements, i.e. the jacobian of the projections of 3D points in the m images. * The jacobian is returned in the order (B_11, ..., B_1m, ..., B_n1, ..., B_nm), where B_ij=dx_ij/db_i (see HZ). * Caller supplies rcidxs and rcsubs which can be used as working memory. * Notice that depending on idxij, some of the B_ij might be missing * */static void sba_str_Qs_jac(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *jac, void *adata){ register int i, j; int pnp, mnp; double *pbi, *pBij; //int n; int m, nnz, Bsz, idx; struct wrap_str_data_ *wdata; void (*projac)(int j, int i, double *bi, double *Bij, void *projac_adata); void *projac_adata; wdata=(struct wrap_str_data_ *)adata; pnp=wdata->pnp; mnp=wdata->mnp; projac=wdata->projac; projac_adata=wdata->adata; //n=idxij->nr; m=idxij->nc; Bsz=mnp*pnp; for(j=0; j<m; ++j){ nnz=sba_crsm_col_elmidxs(idxij, j, rcidxs, rcsubs); /* find nonzero hx_ij, i=0...n-1 */ for(i=0; i<nnz; ++i){ pbi=p + rcsubs[i]*pnp; idx=idxij->val[rcidxs[i]]; pBij=jac + idx*Bsz; // set pBij to point to B_ij (*projac)(j, rcsubs[i], pbi, pBij, projac_adata); // evaluate dQ/db in pBij } }}/* Given a parameter vector p made up of the 3D coordinates of n points, compute in * jac the jacobian of the predicted measurements, i.e. the jacobian of the projections of 3D points in the m images. * The jacobian is approximated with the aid of finite differences and is returned in the order * (B_11, ..., B_1m, ..., B_n1, ..., B_nm), where B_ij=dx_ij/db_i (see HZ). * Notice that depending on idxij, some of the B_ij might be missing * * Problem-specific information is assumed to be stored in a structure pointed to by "dat". * * NOTE: This function is provided mainly for illustration purposes; in case that execution time is a concern, * the jacobian should be computed analytically */static void sba_str_Qs_fdjac( double *p, /* I: current parameter estimate, (n*pnp)x1 */ struct sba_crsm *idxij, /* I: sparse matrix containing the location of x_ij in hx */ int *rcidxs, /* work array for the indexes of nonzero elements of a single sparse matrix row/column */ int *rcsubs, /* work array for the subscripts of nonzero elements in a single sparse matrix row/column */ double *jac, /* O: array for storing the approximated jacobian */ void *dat) /* I: points to a "wrap_str_data_" structure */{ register int i, j, ii, jj; double *pbi; register double *pB; //int m; int n, nnz, Bsz; double tmp; register double d, d1; struct wrap_str_data_ *fdjd; void (*proj)(int j, int i, double *bi, double *xij, void *adata); double *hxij, *hxxij; int pnp, mnp; void *adata; /* retrieve problem-specific information passed in *dat */ fdjd=(struct wrap_str_data_ *)dat; proj=fdjd->proj; pnp=fdjd->pnp; mnp=fdjd->mnp; adata=fdjd->adata; n=idxij->nr; //m=idxij->nc; Bsz=mnp*pnp; /* allocate memory for hxij, hxxij */ if((hxij=malloc(2*mnp*sizeof(double)))==NULL){ fprintf(stderr, "memory allocation request failed in sba_str_Qs_fdjac()!\n"); exit(1); } hxxij=hxij+mnp; /* compute B_ij */ for(i=0; i<n; ++i){ pbi=p+i*pnp; // i-th point parameters nnz=sba_crsm_row_elmidxs(idxij, i, rcidxs, rcsubs); /* find nonzero B_ij, j=0...m-1 */ for(jj=0; jj<pnp; ++jj){ /* determine d=max(SBA_DELTA_SCALE*|pbi[jj]|, SBA_MIN_DELTA), see HZ */ d=(double)(SBA_DELTA_SCALE)*pbi[jj]; // force evaluation d=FABS(d); if(d<SBA_MIN_DELTA) d=SBA_MIN_DELTA; d1=1.0/d; /* invert so that divisions can be carried out faster as multiplications */ for(j=0; j<nnz; ++j){ (*proj)(rcsubs[j], i, pbi, hxij, adata); // evaluate supplied function on current solution tmp=pbi[jj]; pbi[jj]+=d; (*proj)(rcsubs[j], i, pbi, hxxij, adata); pbi[jj]=tmp; /* restore */ pB=jac + idxij->val[rcidxs[j]]*Bsz; // set pB to point to B_ij for(ii=0; ii<mnp; ++ii) pB[ii*pnp+jj]=(hxxij[ii]-hxij[ii])*d1; } } } free(hxij);}/* * Simple driver to sba_motstr_levmar_x for bundle adjustment on camera and structure parameters.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -