📄 constant.m
字号:
% The constants are followed those of used in Luo-Rudy 91's model% Note: in this model Na_i = 18 mmol/L instead of 10 mmol/L as in their % 94's model. GNa_ = 23 millisiemens/uF instead of 16.%% Reference: QN:Luo94a% $Id: Constant.m,v 1.1.1.1 2004/08/19 16:04:07 macleod Exp $global K_o K_i Na_i Na_o Ca_i Ca_o;global R T F;global PK PNa_K;global Cm;global Vrest;global Ggap;% Cell Geometry;Length = 100; % umRadius = 11; % umVcell = pi*Radius^2*Length; % uL, cell volumeAgeo = 2*pi*Radius^2 + 2*pi*Radius*Length; % cm^2, geometric membrane areaAcap = 2*Ageo; % cm^2, capacitive membrane areaVmyo = Vcell*.68; % uL, myoplasma volumeVmito = Vcell*.26; % uL, mitochondria volumeVsr = Vcell*.06; % uL, sarcoplasmic reticulum volumeVjsr = Vsr*0.08; % uL, junctional SR volumeVnsr = Vsr*0.92; % uL, network SR volume% Standard ionic concentrations for ventricular cellsK_o = 5.4; % mmol/LK_i = 145; % mmol/LNa_o = 140; % mmol/LNa_i = 10; % mmol/LCa_o = 1.8; % mmol/LCa_i = 0.12*10^(-3); % mmol/L% Physic constantsF = 96.5; % Faraday constant, coulombs/mmolR = 8.314; % gas constant, J/KT = 273+37; % absolute temperature, K % Cell constantPK = 1.66*10^(-6); % permability of K PNa_K = 0.01833; % permability ratio of Na to KPCa_K = 0.9; %%%%%% need to be varifiedCm = 1; % membrane capacitance, uF/cm^2;% membrane potential at rest %%%%% need workVrest = (R*T/F)*log((K_o + PNa_K*Na_o)/(K_i+PNa_K*Na_i)); % mV% conductance of gap junctions (mS/cm^2) 50 pS per channels x 39 channelsGgap = 1000*1000*50*10^(-12)/Ageo;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -