⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hybrd.c

📁 该程序实现了非线性最小二乘问题和非线性方程组的解法
💻 C
📖 第 1 页 / 共 2 页
字号:
    for (j = 1; j <= i__1; ++j) {	wa3[j] = diag[j] * x[j];/* L60: */    }    xnorm = enorm(n, &wa3[1]);    delta = factor * xnorm;    if (delta == 0.) {	delta = factor;    }L70:/*        form (q transpose)*fvec and store in qtf. */    i__1 = n;    for (i__ = 1; i__ <= i__1; ++i__) {	qtf[i__] = fvec[i__];/* L80: */    }    i__1 = n;    for (j = 1; j <= i__1; ++j) {	if (fjac[j + j * fjac_dim1] == 0.) {	    goto L110;	}	sum = 0.;	i__2 = n;	for (i__ = j; i__ <= i__2; ++i__) {	    sum += fjac[i__ + j * fjac_dim1] * qtf[i__];/* L90: */	}	temp = -sum / fjac[j + j * fjac_dim1];	i__2 = n;	for (i__ = j; i__ <= i__2; ++i__) {	    qtf[i__] += fjac[i__ + j * fjac_dim1] * temp;/* L100: */	}L110:/* L120: */	;    }/*        copy the triangular factor of the qr factorization into r. */    sing = FALSE_;    i__1 = n;    for (j = 1; j <= i__1; ++j) {	l = j;	jm1 = j - 1;	if (jm1 < 1) {	    goto L140;	}	i__2 = jm1;	for (i__ = 1; i__ <= i__2; ++i__) {	    r__[l] = fjac[i__ + j * fjac_dim1];	    l = l + n - i__;/* L130: */	}L140:	r__[l] = wa1[j];	if (wa1[j] == 0.) {	    sing = TRUE_;	}/* L150: */    }/*        accumulate the orthogonal factor in fjac. */    qform(n, n, &fjac[fjac_offset], ldfjac, &wa1[1]);/*        rescale if necessary. */    if (mode == 2) {	goto L170;    }    i__1 = n;    for (j = 1; j <= i__1; ++j) {/* Computing MAX */	d__1 = diag[j], d__2 = wa2[j];	diag[j] = max(d__1,d__2);/* L160: */    }L170:/*        beginning of the inner loop. */L180:/*           if requested, call fcn to enable printing of iterates. */    if (nprint <= 0) {	goto L190;    }    iflag = 0;    if ((iter - 1) % nprint == 0) {	iflag = (*fcn)(p, n, &x[1], &fvec[1], 0);    }    if (iflag < 0) {	goto L300;    }L190:/*           determine the direction p. */    dogleg(n, &r__[1], lr, &diag[1], &qtf[1], delta, &wa1[1], &wa2[1], &wa3[	    1]);/*           store the direction p and x + p. calculate the norm of p. */    i__1 = n;    for (j = 1; j <= i__1; ++j) {	wa1[j] = -wa1[j];	wa2[j] = x[j] + wa1[j];	wa3[j] = diag[j] * wa1[j];/* L200: */    }    pnorm = enorm(n, &wa3[1]);/*           on the first iteration, adjust the initial step bound. */    if (iter == 1) {	delta = min(delta,pnorm);    }/*           evaluate the function at x + p and calculate its norm. */    iflag = (*fcn)(p, n, &wa2[1], &wa4[1], 1);    ++(*nfev);    if (iflag < 0) {	goto L300;    }    fnorm1 = enorm(n, &wa4[1]);/*           compute the scaled actual reduction. */    actred = -1.;    if (fnorm1 < fnorm) {/* Computing 2nd power */	d__1 = fnorm1 / fnorm;	actred = 1. - d__1 * d__1;    }/*           compute the scaled predicted reduction. */    l = 1;    i__1 = n;    for (i__ = 1; i__ <= i__1; ++i__) {	sum = 0.;	i__2 = n;	for (j = i__; j <= i__2; ++j) {	    sum += r__[l] * wa1[j];	    ++l;/* L210: */	}	wa3[i__] = qtf[i__] + sum;/* L220: */    }    temp = enorm(n, &wa3[1]);    prered = 0.;    if (temp < fnorm) {/* Computing 2nd power */	d__1 = temp / fnorm;	prered = 1. - d__1 * d__1;    }/*           compute the ratio of the actual to the predicted *//*           reduction. */    ratio = 0.;    if (prered > 0.) {	ratio = actred / prered;    }/*           update the step bound. */    if (ratio >= p1) {	goto L230;    }    ncsuc = 0;    ++ncfail;    delta = p5 * delta;    goto L240;L230:    ncfail = 0;    ++ncsuc;    if (ratio >= p5 || ncsuc > 1) {/* Computing MAX */	d__1 = delta, d__2 = pnorm / p5;	delta = max(d__1,d__2);    }    if (fabs(ratio - 1.) <= p1) {	delta = pnorm / p5;    }L240:/*           test for successful iteration. */    if (ratio < p0001) {	goto L260;    }/*           successful iteration. update x, fvec, and their norms. */    i__1 = n;    for (j = 1; j <= i__1; ++j) {	x[j] = wa2[j];	wa2[j] = diag[j] * x[j];	fvec[j] = wa4[j];/* L250: */    }    xnorm = enorm(n, &wa2[1]);    fnorm = fnorm1;    ++iter;L260:/*           determine the progress of the iteration. */    ++nslow1;    if (actred >= p001) {	nslow1 = 0;    }    if (jeval) {	++nslow2;    }    if (actred >= p1) {	nslow2 = 0;    }/*           test for convergence. */    if (delta <= xtol * xnorm || fnorm == 0.) {	info = 1;    }    if (info != 0) {	goto L300;    }/*           tests for termination and stringent tolerances. */    if (*nfev >= maxfev) {	info = 2;    }/* Computing MAX */    d__1 = p1 * delta;    if (p1 * max(d__1,pnorm) <= epsmch * xnorm) {	info = 3;    }    if (nslow2 == 5) {	info = 4;    }    if (nslow1 == 10) {	info = 5;    }    if (info != 0) {	goto L300;    }/*           criterion for recalculating jacobian approximation *//*           by forward differences. */    if (ncfail == 2) {	goto L290;    }/*           calculate the rank one modification to the jacobian *//*           and update qtf if necessary. */    i__1 = n;    for (j = 1; j <= i__1; ++j) {	sum = 0.;	i__2 = n;	for (i__ = 1; i__ <= i__2; ++i__) {	    sum += fjac[i__ + j * fjac_dim1] * wa4[i__];/* L270: */	}	wa2[j] = (sum - wa3[j]) / pnorm;	wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);	if (ratio >= p0001) {	    qtf[j] = sum;	}/* L280: */    }/*           compute the qr factorization of the updated jacobian. */    r1updt(n, n, &r__[1], lr, &wa1[1], &wa2[1], &wa3[1], &sing);    r1mpyq(n, n, &fjac[fjac_offset], ldfjac, &wa2[1], &wa3[1]);    r1mpyq(1, n, &qtf[1], 1, &wa2[1], &wa3[1]);/*           end of the inner loop. */    jeval = FALSE_;    goto L180;L290:/*        end of the outer loop. */    goto L30;L300:/*     termination, either normal or user imposed. */    if (iflag < 0) {	info = iflag;    }    if (nprint > 0) {	(*fcn)(p, n, &x[1], &fvec[1], 0);    }    return info;/*     last card of subroutine hybrd. */} /* hybrd_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -