📄 thybrj1.c
字号:
/* driver for hybrj1 example. */#include <stdio.h>#include <math.h>#include <cminpack.h>int fcn(void *p, int n, const double *x, double *fvec, double *fjac, int ldfjac, int iflag);int main(){ int j, n, ldfjac, info, lwa; double tol, fnorm; double x[9], fvec[9], fjac[9*9], wa[99]; n = 9;/* the following starting values provide a rough solution. */ for (j=1; j<=9; j++) { x[j-1] = -1.; } ldfjac = 9; lwa = 99;/* set tol to the square root of the machine precision. *//* unless high solutions are required, *//* this is the recommended setting. */ tol = sqrt(dpmpar(1)); info = hybrj1(fcn, 0, n, x, fvec, fjac, ldfjac, tol, wa, lwa); fnorm = enorm(n, fvec); printf(" final l2 norm of the residuals%15.7g\n\n", fnorm); printf(" exit parameter %10i\n\n", info); printf(" final approximate solution\n"); for (j=1; j<=n; j++) printf("%s%15.7g", j%3==1?"\n ":"", x[j-1]); printf("\n"); return 0;}int fcn(void *p, int n, const double *x, double *fvec, double *fjac, int ldfjac, int iflag){ /* subroutine fcn for hybrj1 example. */ int j, k; double one=1, temp, temp1, temp2, three=3, two=2, zero=0, four=4; if (iflag != 2) { for (k = 1; k <= n; k++) { temp = (three - two*x[k-1])*x[k-1]; temp1 = zero; if (k != 1) temp1 = x[k-1-1]; temp2 = zero; if (k != n) temp2 = x[k+1-1]; fvec[k-1] = temp - temp1 - two*temp2 + one; } } else { for (k = 1; k <= n; k++) { for (j = 1; j <= n; j++) { fjac[k-1 + ldfjac*(j-1)] = zero; } fjac[k-1 + ldfjac*(k-1)] = three - four*x[k-1]; if (k != 1) fjac[k-1 + ldfjac*(k-1-1)] = -one; if (k != n) fjac[k-1 + ldfjac*(k+1-1)] = -two; } } return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -