📄 nrbdeval.m
字号:
function [pnt,jac] = nrbdeval(nurbs, dnurbs, tt)
% Evaluation of the derivative NURBS curve or surface.
%
% [pnt, jac] = nrbdeval(crv, dcrv, tt)
% [pnt, jac] = nrbdeval(srf, dsrf, {tu tv})
%
% INPUTS:
%
% crv - original NURBS curve.
%
% srf - original NUBRS surface
%
% dcrv - NURBS derivative represention of crv
%
% dsrf - NURBS derivative represention of surface
%
% tt - parametric evaluation points
% If the nurbs is a surface then tt is a cell
% {tu, tv} are the parametric coordinates
%
% pnt - evaluated points.
% jac - evaluated first derivatives (Jacobian).
%
% Examples:
%
% // Determine the first derivatives a NURBS curve at 9 points for 0.0 to
% // 1.0
% tt = linspace(0.0, 1.0, 9);
% dcrv = nrbderiv(crv);
% [pnts,jac] = nrbdeval(crv, dcrv, tt);
% D.M. Spink
% Copyright (c) 2000.
if ~isstruct(nurbs)
error('NURBS representation is not structure!');
end
if ~strcmp(nurbs.form,'B-NURBS')
error('Not a recognised NURBS representation');
end
[cp,cw] = nrbeval(nurbs, tt);
if iscell(nurbs.knots)
% NURBS structure represents a surface
temp = cw(ones(3,1),:,:);
pnt = cp./temp;
[cup,cuw] = nrbeval(dnurbs{1}, tt);
tempu = cuw(ones(3,1),:,:);
jac{1} = (cup-tempu.*pnt)./temp;
[cvp,cvw] = nrbeval(dnurbs{2}, tt);
tempv = cvw(ones(3,1),:,:);
jac{2} = (cvp-tempv.*pnt)./temp;
else
% NURBS is a curve
temp = cw(ones(3,1),:);
pnt = cp./temp;
% first derivative
[cup,cuw] = nrbeval(dnurbs,tt);
temp1 = cuw(ones(3,1),:);
jac = (cup-temp1.*pnt)./temp;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -