📄 ls.m
字号:
%--------------最小二乘法程序----------------------%
clear
% loops = 20; % loops 是独立实验次数
% for loop=1:loops
% 生成观测数据
n = [1:128];
x = sqrt(20)*sin(2*pi*0.2*n) + sqrt(2)*sin(2*pi*0.213*n)+randn(1,128); % x(1,128)的行向量
%w=randn(2000,1);
%for n=1:1:128
%x(n)=(20^(1/2))*sin(2*pi*0.2*n)+(2^(1/2))*sin(2*pi*0.213*n)+w(n+loop*50); %产生观测数据的另一种方法,随机性更好
%end
Rxx = xcorr(x,'unbiased'); % 相关矩阵
% AR阶数p给定为4或6
p = 4;
% p = 6
q = p; % 用于谐波恢复的ARMA模型是特殊的APRM
for i = 1:p
for j = 1:p+1
Re(i,j) = Rxx(p+i+1-j);
end
end % Re是修正方程的增广矩阵
%最小二乘法估计ARMA模型的参数
A = Re(:,[2:p+1]);
b = (-1)*Re(:,1); % 修正方程 A*a = b 注意:a=[a1,a2,...ap]
a = inv(A'*A)*A'*b
% ARMA_LS(:,loop) = a;
% 构造特征多项式A(z)
Az(1) = 1;
for i = 2:p+1
Az(i) = a(i-1);
end
z = roots(Az)
num = 1;
for i = 1:2:p
f_ls(num) = atan(imag(z(i))/real(z(i)));
f_ls(num) = abs(f_ls(num))/(2*pi);
num = num +1;
end
f_ls = sort(f_ls)
% Fz(:,loop) = f_ls;
%end
% ARMA_LS
% ARMA_LS_mean = mean(ARMA_LS,2)
% ARMA_LS_std = std(ARMA_LS')
% Fz
% Fz_mean = mean(Fz,2)
% Fz_std = std(Fz')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -