⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 globalparams.h

📁 基于稀疏网络的精选机器学习模型
💻 H
字号:
// -*-c++-*-//===========================================================//=     University of Illinois at Urbana-Champaign          =//=     Department of Computer Science                      =//=     Dr. Dan Roth - Cognitive Computation Group          =//=                                                         =//=  Project: SNoW                                          =//=                                                         =//=   Module: GlobalParams.h                                =//=  Version: 3.2.0                                         =//=  Authors: Jeff Rosen, Andrew Carlson, Nick Rizzolo      =//=     Date: xx/xx/99                                      = //=                                                         =//= Comments:                                               =//===========================================================#ifndef GLOBALPARAMS_H__#define GLOBALPARAMS_H__#define AVERAGE_EXAMPLE_SIZE#include <string>#include <vector>#include <numeric>#include <iomanip>#include "TargetIdSet.h"using namespace std;class ThickSeparator{  public:    double positive;    double negative;    ThickSeparator() : positive(0), negative(0) { }};class GlobalParams{  public:    GlobalParams();    ~GlobalParams() {       if (targetIdsArray) delete [] targetIdsArray;    }    RunMode               runMode;    int                   serverPort;    Counter               currentCycle;    Counter               cycles;    DiscardMethod         discardMethod;    EligibilityMethod     eligibilityMethod;    PredictMethod         predictMethod;     double                discardThreshold;    Counter               eligibilityThreshold;    Counter               curveInterval;    TargetIdSet           targetIds;    string                inputFile;    string                outputFile;    ostream*              pResultsOutput;    string                testFile;    string                networkFile;    string                errorFile;    string                algorithmSpecification;    string                evalExample;    bool                  sparseNetwork;    bool                  noFirstCycleUpdate;    bool                  onlineLearning;    Verbosity             verbosity;    double                smoothing;    double                bayesSmoothing;    double                predictionThreshold;    double                eligibilityPercentage;    double                averageExampleSize;    double                maxExampleSize;    bool                  calculateExampleSize;    bool                  labelsPresent;    bool                  multipleLabels;      ConjunctionMethod     generateConjunctions;    bool                  writeConjunctions;    bool                  rawMode;    bool                  examplesInMemory;    bool                  writePendingFeatures;    bool                  threshold_relative;    bool                  fixedFeature;    ThickSeparator        thickSeparator;    bool                  constraintClassification;    bool                  conservativeCC;    FeatureID*            targetIdsArray;    bool                  gradientDescent;    unsigned long         targetOutputLimit;    bool                  updateExistingNetwork;  bool votedPerceptron;};inline GlobalParams::GlobalParams() :        runMode(MODE_TRAIN),        serverPort(0),        currentCycle(0),        cycles(2),        discardMethod(DISCARD_NONE),        eligibilityMethod(ELIGIBILITY_COUNT),        predictMethod(PREDICT_METHOD_UNSET),        discardThreshold(0.2),        eligibilityThreshold(2),        curveInterval(0),        targetIdsArray(NULL),        sparseNetwork(true),        noFirstCycleUpdate(false),        onlineLearning(false),        verbosity(VERBOSE_MIN),        pResultsOutput(NULL),        smoothing(0.0),        bayesSmoothing(15.0),        predictionThreshold(-1.0),        eligibilityPercentage(0.1),        averageExampleSize(0),        maxExampleSize(0),        calculateExampleSize(false),        labelsPresent(true),        multipleLabels(true),        generateConjunctions(CONJUNCTIONS_UNSET),        writeConjunctions(false),        rawMode(false),        examplesInMemory(false),        writePendingFeatures(false),        threshold_relative(false),        fixedFeature(true),        constraintClassification(false),        conservativeCC(false),        gradientDescent(false),        targetOutputLimit(ULONG_MAX),        thickSeparator(),	updateExistingNetwork(false),	inputFile(""),	votedPerceptron(false){}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -