📄 globalparams.h
字号:
// -*-c++-*-//===========================================================//= University of Illinois at Urbana-Champaign =//= Department of Computer Science =//= Dr. Dan Roth - Cognitive Computation Group =//= =//= Project: SNoW =//= =//= Module: GlobalParams.h =//= Version: 3.2.0 =//= Authors: Jeff Rosen, Andrew Carlson, Nick Rizzolo =//= Date: xx/xx/99 = //= =//= Comments: =//===========================================================#ifndef GLOBALPARAMS_H__#define GLOBALPARAMS_H__#define AVERAGE_EXAMPLE_SIZE#include <string>#include <vector>#include <numeric>#include <iomanip>#include "TargetIdSet.h"using namespace std;class ThickSeparator{ public: double positive; double negative; ThickSeparator() : positive(0), negative(0) { }};class GlobalParams{ public: GlobalParams(); ~GlobalParams() { if (targetIdsArray) delete [] targetIdsArray; } RunMode runMode; int serverPort; Counter currentCycle; Counter cycles; DiscardMethod discardMethod; EligibilityMethod eligibilityMethod; PredictMethod predictMethod; double discardThreshold; Counter eligibilityThreshold; Counter curveInterval; TargetIdSet targetIds; string inputFile; string outputFile; ostream* pResultsOutput; string testFile; string networkFile; string errorFile; string algorithmSpecification; string evalExample; bool sparseNetwork; bool noFirstCycleUpdate; bool onlineLearning; Verbosity verbosity; double smoothing; double bayesSmoothing; double predictionThreshold; double eligibilityPercentage; double averageExampleSize; double maxExampleSize; bool calculateExampleSize; bool labelsPresent; bool multipleLabels; ConjunctionMethod generateConjunctions; bool writeConjunctions; bool rawMode; bool examplesInMemory; bool writePendingFeatures; bool threshold_relative; bool fixedFeature; ThickSeparator thickSeparator; bool constraintClassification; bool conservativeCC; FeatureID* targetIdsArray; bool gradientDescent; unsigned long targetOutputLimit; bool updateExistingNetwork; bool votedPerceptron;};inline GlobalParams::GlobalParams() : runMode(MODE_TRAIN), serverPort(0), currentCycle(0), cycles(2), discardMethod(DISCARD_NONE), eligibilityMethod(ELIGIBILITY_COUNT), predictMethod(PREDICT_METHOD_UNSET), discardThreshold(0.2), eligibilityThreshold(2), curveInterval(0), targetIdsArray(NULL), sparseNetwork(true), noFirstCycleUpdate(false), onlineLearning(false), verbosity(VERBOSE_MIN), pResultsOutput(NULL), smoothing(0.0), bayesSmoothing(15.0), predictionThreshold(-1.0), eligibilityPercentage(0.1), averageExampleSize(0), maxExampleSize(0), calculateExampleSize(false), labelsPresent(true), multipleLabels(true), generateConjunctions(CONJUNCTIONS_UNSET), writeConjunctions(false), rawMode(false), examplesInMemory(false), writePendingFeatures(false), threshold_relative(false), fixedFeature(true), constraintClassification(false), conservativeCC(false), gradientDescent(false), targetOutputLimit(ULONG_MAX), thickSeparator(), updateExistingNetwork(false), inputFile(""), votedPerceptron(false){}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -