⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sa_ex2_3.m

📁 智能天线Matlab版源代码
💻 M
字号:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                         %%%% ******************************************************  %%%% * Smart Antennas for Wireless Applications w/ Matlab *  %%%% ******************************************************  %%%%                                                         %%%% Chapter 2: Ex 2.3                                       %%%%                                                         %%%% Author: Frank Gross                                     %%%% McGraw-Hill, 2005                                       %%%% Date:  11/13/2004                                       %%%%                                                         %%%% This code creates Figure 2.13, a plot of the standing   %%%%     wave pattern for plane wave at normal incidence to  %% %%     dielectric boundary where n2 = .5n1                 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%----------------- Define Variables: ---------------------%%% n2 - normalized impedance of medium 2 in terms of n1      %% R - complex reflection coefficient                        %% angle - angle of reflection coefficient                   %% bz - range of propagation where b is phase constant       %% env - envelope total field in region 1                    % %%---------------------------------------------------------%%%%----- Given Values -----%%n2 = 0.5; bz = -4*pi:.001:0;%%----- Determine Reflection Coefficient and Angle -----%%R = (n2-1)/(n2+1);angle = atan2(imag(R),real(R));%%----- Create Envelope of Total Field in Region 1 -----%%env=sqrt(1+abs(R)^2+2*abs(R)*cos(2*bz+angle));%%----- Plot Results -----%%figure(1), plot(bz,env,'k')xlabel('\betaz'), ylabel('|E_1|')title('\bfFigure 2.13 - Standing Wave Pattern for Normal Incidence (\eta_2 = .5\eta_1)')axis([-4*pi 0 0 1.5]), grid on

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -