⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sa_ex7_10.m

📁 智能天线Matlab版源代码
💻 M
字号:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                         %%%% ******************************************************  %%%% * Smart Antennas for Wireless Applications w/ Matlab *  %%%% ******************************************************  %%%%                                                         %%%% Chapter 7: Ex 7.10                                      %%%%                                                         %%%% Author: Frank Gross                                     %%%% McGraw-Hill, 2005                                       %%%% Date:  1/26/2004                                        %%%%                                                         %%%% This code creates Figure 7.7, plot of a Min - Norm      %%%%     Pseudospectrum for theta1= -5 & theta2 = 5          %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      %%------------------- Define Variables:--------------------%%% M - # of elements in array                                %% sig2 - noise variance                                     %% D - number of signals                                     %% th1, th2 - angles of arrival                              %% a1, a2, a - array steering vectors                        %% u1 - Cartesian basis vector                               %% A - Steering vector matrix                                %% Rss - Source correlation matrix                           %% Rxx - Array correlation matrix                            %% V,Dia - eigen vectors, V and eigen values, D of Rxx       %% EN - Noise subspace matrix                                %% P - Min - Norm Psuedospectra                              % %%---------------------------------------------------------%%%%----- Given Values -----%%M = 6;  sig2 = .1;  D = 2;th1 = -5*pi/180;  th2 = 5*pi/180;temp = eye(M);  u1 = temp(:,1);%%----- Create array steering vectors, a1 & a2 -----%%a1 = [];  a2 = [];i = 1:M;a1 = exp(1j*(i-1)*pi*sin(th1));a2 = exp(1j*(i-1)*pi*sin(th2));%%----- Create A, Rss, Rxx -----%%A=[a1.' a2.']; Rss = [1 0;0 1];  Rxx = A*Rss*A' + sig2*eye(M);%%----- Calculate the noise subspace matrix of eigen vectors, EN -----%%[V,Dia] = eig(Rxx); [Y,Index] = sort(diag(Dia));  % sort eigenvalues from least to greatestEN = V(:,Index(1:M-D));    % calculate the noise subspace matrix of eigenvectors                           % using the sorting done in the previous lineES = V(:,Index(M-1:M));%%----- Create Nin-Norm Psuedospectrum -----%%for k=1:180;    th(k) = -pi/6 + pi*k/(3*180);    clear a    a = [];    for jj = 1:M       a = [a exp(1j*(jj-1)*pi*sin(th(k)))];    end    P(k) = 1./abs(conj(a)*EN*EN'*u1).^2; end%%----- Plot Results -----%%plot(th*180/pi,10*log10(P/max(P)),'k')grid ontitle(['\bfFigure 7.7 - Min - Norm Psuedospectra for \theta = +/- 5^o'])xlabel('Angle')ylabel('|P(\theta)|')axis([-30 30 -30 10])

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -