📄 singularvaluedecomposition.java
字号:
// negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k<p // kase = 2 if s(k) is negligible and k<p // kase = 3 if e[k-1] is negligible, k<p, and // s(k), ..., s(p) are not negligible (qr step). // kase = 4 if e(p-1) is negligible (convergence). for (k = p-2; k >= -1; k--) { if (k == -1) { break; } if (Math.abs(e[k]) <= tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) { e[k] = 0.0; break; } } if (k == p-2) { kase = 4; } else { int ks; for (ks = p-1; ks >= k; ks--) { if (ks == k) { break; } double t = (ks != p ? Math.abs(e[ks]) : 0.) + (ks != k+1 ? Math.abs(e[ks-1]) : 0.); if (Math.abs(s[ks]) <= tiny + eps*t) { s[ks] = 0.0; break; } } if (ks == k) { kase = 3; } else if (ks == p-1) { kase = 1; } else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. switch (kase) { // Deflate negligible s(p). case 1: { double f = e[p-2]; e[p-2] = 0.0; for (int j = p-2; j >= k; j--) { double t = Maths.hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; if (j != k) { f = -sn*e[j-1]; e[j-1] = cs*e[j-1]; } if (wantv) { for (int i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][p-1]; V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1]; V[i][j] = t; } } } } break; // Split at negligible s(k). case 2: { double f = e[k-1]; e[k-1] = 0.0; for (int j = k; j < p; j++) { double t = Maths.hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; f = -sn*e[j]; e[j] = cs*e[j]; if (wantu) { for (int i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][k-1]; U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1]; U[i][j] = t; } } } } break; // Perform one qr step. case 3: { // Calculate the shift. double scale = Math.max(Math.max(Math.max(Math.max( Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), Math.abs(s[k])),Math.abs(e[k])); double sp = s[p-1]/scale; double spm1 = s[p-2]/scale; double epm1 = e[p-2]/scale; double sk = s[k]/scale; double ek = e[k]/scale; double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; double c = (sp*epm1)*(sp*epm1); double shift = 0.0; if ((b != 0.0) | (c != 0.0)) { shift = Math.sqrt(b*b + c); if (b < 0.0) { shift = -shift; } shift = c/(b + shift); } double f = (sk + sp)*(sk - sp) + shift; double g = sk*ek; // Chase zeros. for (int j = k; j < p-1; j++) { double t = Maths.hypot(f,g); double cs = f/t; double sn = g/t; if (j != k) { e[j-1] = t; } f = cs*s[j] + sn*e[j]; e[j] = cs*e[j] - sn*s[j]; g = sn*s[j+1]; s[j+1] = cs*s[j+1]; if (wantv) { for (int i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][j+1]; V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1]; V[i][j] = t; } } t = Maths.hypot(f,g); cs = f/t; sn = g/t; s[j] = t; f = cs*e[j] + sn*s[j+1]; s[j+1] = -sn*e[j] + cs*s[j+1]; g = sn*e[j+1]; e[j+1] = cs*e[j+1]; if (wantu && (j < m-1)) { for (int i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][j+1]; U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1]; U[i][j] = t; } } } e[p-2] = f; iter = iter + 1; } break; // Convergence. case 4: { // Make the singular values positive. if (s[k] <= 0.0) { s[k] = (s[k] < 0.0 ? -s[k] : 0.0); if (wantv) { for (int i = 0; i <= pp; i++) { V[i][k] = -V[i][k]; } } } // Order the singular values. while (k < pp) { if (s[k] >= s[k+1]) { break; } double t = s[k]; s[k] = s[k+1]; s[k+1] = t; if (wantv && (k < n-1)) { for (int i = 0; i < n; i++) { t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t; } } if (wantu && (k < m-1)) { for (int i = 0; i < m; i++) { t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t; } } k++; } iter = 0; p--; } break; } } } /** * Return the left singular vectors * @return U */ public Matrix getU() { return new Matrix(U,m,Math.min(m+1,n)); } /** * Return the right singular vectors * @return V */ public Matrix getV() { return new Matrix(V,n,n); } /** * Return the one-dimensional array of singular values * @return diagonal of S. */ public double[] getSingularValues() { return s; } /** * Return the diagonal matrix of singular values * @return S */ public Matrix getS() { Matrix X = new Matrix(n,n); double[][] S = X.getArray(); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { S[i][j] = 0.0; } S[i][i] = this.s[i]; } return X; } /** * Two norm * @return max(S) */ public double norm2() { return s[0]; } /** * Two norm condition number * @return max(S)/min(S) */ public double cond() { return s[0]/s[Math.min(m,n)-1]; } /** * Effective numerical matrix rank * @return Number of nonnegligible singular values. */ public int rank() { double eps = Math.pow(2.0,-52.0); double tol = Math.max(m,n)*s[0]*eps; int r = 0; for (int i = 0; i < s.length; i++) { if (s[i] > tol) { r++; } } return r; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -