📄 regsmoimproved.java
字号:
m_bUp = Double.MAX_VALUE; m_bLow = -Double.MAX_VALUE; for (int j = m_I0.getNext(-1); j != -1; j = m_I0.getNext(j)) { updateBoundaries(j, m_error[j]); } if (!m_I0.contains(i1)) { updateBoundaries(i1, m_error[i1]); } if (!m_I0.contains(i2)) { updateBoundaries(i2, m_error[i2]); } return 1; } else { return 0; } } /** * updates the index sets I0a, IOb, I1, I2 and I3 for vector i * * @param i index of vector * @param C capacity for vector i * @throws Exception */ protected void updateIndexSetFor(int i, double C) throws Exception { /* m_I0a.delete(i); m_I0b.delete(i); m_I1.delete(i); m_I2.delete(i); m_I3.delete(i); */ if (m_alpha[i] == 0 && m_alphaStar[i] == 0) { //m_I1.insert(i); m_iSet[i] = I1; m_I0.delete(i); } else if (m_alpha[i] > 0) { if (m_alpha[i] < C) { if ((m_iSet[i] & I0) == 0) { //m_error[i] = -SVMOutput(i) - m_b + m_target[i]; m_I0.insert(i); } //m_I0a.insert(i); m_iSet[i] = I0a; } else { // m_alpha[i] == C //m_I3.insert(i); m_iSet[i] = I3; m_I0.delete(i); } } else {// m_alphaStar[i] > 0 if (m_alphaStar[i] < C) { if ((m_iSet[i] & I0) == 0) { //m_error[i] = -SVMOutput(i) - m_b + m_target[i]; m_I0.insert(i); } //m_I0b.insert(i); m_iSet[i] = I0b; } else { // m_alpha[i] == C //m_I2.insert(i); m_iSet[i] = I2; m_I0.delete(i); } } } /** * updates boundaries bLow and bHi and corresponding indexes * * @param i2 index of vector * @param F2 error of vector i2 */ protected void updateBoundaries(int i2, double F2) { int iSet = m_iSet[i2]; double FLow = m_bLow; if ((iSet & (I2 | I0b)) > 0) { FLow = F2 + m_epsilon; } else if ((iSet & (I1 | I0a)) > 0) { FLow = F2 - m_epsilon; } if (m_bLow < FLow) { m_bLow = FLow; m_iLow = i2; } double FUp = m_bUp; if ((iSet & (I3 | I0a)) > 0) { FUp = F2 - m_epsilon; } else if ((iSet & (I1 | I0b)) > 0) { FUp = F2 + m_epsilon; } if (m_bUp > FUp) { m_bUp = FUp; m_iUp = i2; } } /** * parameters correspond to pseudocode from paper. * * @param i2 index of candidate * @return * @throws Exception */ protected int examineExample(int i2) throws Exception { //procedure examineExample(i2) // // alpha2, alpha2' = Lagrange multipliers for i2 double alpha2 = m_alpha[i2]; double alpha2Star = m_alphaStar[i2]; // if (i2 is in I.0) // F2 = f-cache[i2] // else // compute F2 = F.i2 and set f-cache[i2] = F2 // % Update (b.low, i.low) or (b.up, i.up) using (F2, i2)... // if (i2 is in I.1) // if (F2+epsilon < b.up) // b.up = F2+epsilon, // i.up = i2 // elseif (F2-epsilon > b.low) // b.low = F2-epsilon, // i.low = i2 // end if // elseif ( (i2 is in I.2) && (F2+epsilon > b.low) ) // b.low = F2+epsilon, // i.low = i2 // elseif ( (i2 is in I.3) && (F2-epsilon < b.up) ) // b.up = F2-epsilon, // i.up = i2 // endif // endif int iSet = m_iSet[i2]; double F2 = m_error[i2]; if (!m_I0.contains(i2)) { F2 = -SVMOutput(i2) - m_b + m_target[i2]; m_error[i2] = F2; if (iSet == I1) { if (F2 + m_epsilon < m_bUp) { m_bUp = F2 + m_epsilon; m_iUp = i2; } else if (F2 - m_epsilon > m_bLow) { m_bLow = F2 - m_epsilon; m_iLow = i2; } } else if ((iSet == I2) && (F2 + m_epsilon > m_bLow)) { m_bLow = F2 + m_epsilon; m_iLow = i2; } else if ((iSet == I3) && (F2 - m_epsilon < m_bUp)) { m_bUp = F2 - m_epsilon; m_iUp = i2; } } // % Check optimality using current b.low and b.up and, if // % violated, find an index i1 to do joint optimization with i2... // optimality = 1; // case 1: i2 is in I.0a // if (b.low-(F2-epsilon) > 2 * tol) // optimality = 0; // i1 = i.low; // % For i2 in I.0a choose the better i1... // if ((F2-epsilon)-b.up > b.low-(F2-epsilon)) // i1 = i.up; // endif // elseif ((F2-epsilon)-b.up > 2 * tol) // optimality = 0; // i1 = i.up; // % For i2 in I.0a choose the better i1... // if ((b.low-(F2-epsilon) > (F2-epsilon)-b.up) // i1 = i.low; // endif // endif // case 2: i2 is in I.0b // if (b.low-(F2+epsilon) > 2 * tol) // optimality = 0; // i1 = i.low; // % For i2 in I.0b choose the better i1... // if ((F2+epsilon)-b.up > b.low-(F2+epsilon)) // i1 = i.up; // endif // elseif ((F2+epsilon)-b.up > 2 * tol) // optimality = 0; // i1 = i.up; // % For i2 in I.0b choose the better i1... // if ((b.low-(F2+epsilon) > (F2+epsilon)-b.up) // i1 = i.low; // endif // endif // case 3: i2 is in I.1 // if (b.low-(F2+epsilon) > 2 * tol) // optimality = 0; // i1 = i.low; // % For i2 in I1 choose the better i1... // if ((F2+epsilon)-b.up > b.low-(F2+epsilon) // i1 = i.up; // endif // elseif ((F2-epsilon)-b.up > 2 * tol) // optimality = 0; // i1 = i.up; // % For i2 in I1 choose the better i1... // if (b.low-(F2-epsilon) > (F2-epsilon)-b.up) // i1 = i.low; // endif // endif // case 4: i2 is in I.2 // if ((F2+epsilon)-b.up > 2*tol) // optimality = 0, // i1 = i.up // endif // case 5: i2 is in I.3 // if ((b.low-(F2-epsilon) > 2*tol) // optimality = 0, i1 = i.low // endif int i1 = i2; boolean bOptimality = true; //case 1: i2 is in I.0a if (iSet == I0a) { if (m_bLow - (F2 - m_epsilon) > 2 * m_fTolerance) { bOptimality = false; i1 = m_iLow; //% For i2 in I .0 a choose the better i1... if ((F2 - m_epsilon) - m_bUp > m_bLow - (F2 - m_epsilon)) { i1 = m_iUp; } } else if ((F2 - m_epsilon) - m_bUp > 2 * m_fTolerance) { bOptimality = false; i1 = m_iUp; //% For i2 in I.0a choose the better i1... if (m_bLow - (F2 - m_epsilon) > (F2 - m_epsilon) - m_bUp) { i1 = m_iLow; } } } // case 2: i2 is in I.0b else if (iSet == I0b) { if (m_bLow - (F2 + m_epsilon) > 2 * m_fTolerance) { bOptimality = false; i1 = m_iLow; // % For i2 in I.0b choose the better i1... if ((F2 + m_epsilon) - m_bUp > m_bLow - (F2 + m_epsilon)) { i1 = m_iUp; } } else if ((F2 + m_epsilon) - m_bUp > 2 * m_fTolerance) { bOptimality = false; i1 = m_iUp; // % For i2 in I.0b choose the better i1... if (m_bLow - (F2 + m_epsilon) > (F2 + m_epsilon) - m_bUp) { i1 = m_iLow; } } } // case 3: i2 is in I.1 else if (iSet == I1) { if (m_bLow - (F2 + m_epsilon) > 2 * m_fTolerance) { bOptimality = false; i1 = m_iLow; //% For i2 in I1 choose the better i1... if ((F2 + m_epsilon) - m_bUp > m_bLow - (F2 + m_epsilon)) { i1 = m_iUp; } } else if ((F2 - m_epsilon) - m_bUp > 2 * m_fTolerance) { bOptimality = false; i1 = m_iUp; // % For i2 in I1 choose the better i1... if (m_bLow - (F2 - m_epsilon) > (F2 - m_epsilon) - m_bUp) { i1 = m_iLow; } } } //case 4: i2 is in I.2 else if (iSet == I2) { if ((F2 + m_epsilon) - m_bUp > 2 * m_fTolerance) { bOptimality = false; i1 = m_iUp; } } //case 5: i2 is in I.3 else if (iSet == I3) { if (m_bLow - (F2 - m_epsilon) > 2 * m_fTolerance) { bOptimality = false; i1 = m_iLow; } } // if (optimality == 1) // return 0 // if (takeStep(i1, i2)) // return 1 // else // return 0 // endif //endprocedure if (bOptimality) { return 0; } return takeStep(i1, i2, m_alpha[i2], m_alphaStar[i2], F2); } /** * initialize various variables before starting the actual optimizer * * @param data data set used for learning * @throws Exception if something goes wrong */ protected void init(Instances data) throws Exception { super.init(data); // from Keerthi's pseudo code: // set alpha and alpha' to zero for every example set I.1 to contain all the examples // Choose any example i from the training set. // set b.up = target[i]+epsilon // set b.low = target[i]-espilon // i.up = i.low = i; // Initialize sets m_I0 = new SMOset(m_data.numInstances()); m_iSet = new int [m_data.numInstances()]; for (int i = 0; i < m_nInstances; i++) { m_iSet[i] = I1; } // m_iUp = m_random.nextInt(m_nInstances); m_iUp = 0; m_bUp = m_target[m_iUp] + m_epsilon; m_iLow = m_iUp; m_bLow = m_target[m_iLow] - m_epsilon; //init error cache m_error = new double[m_nInstances]; for (int i = 0; i < m_nInstances; i++) { m_error[i] = m_target[i]; } } /** * use variant 1 of Shevade's et al.s paper * * @throws Exception if something goes wrong */ protected void optimize1() throws Exception { //% main routine for modification 1 procedure main // while (numChanged > 0 || examineAll) // numChanged = 0; int nNumChanged = 0; boolean bExamineAll = true; // while (numChanged > 0 || examineAll) // numChanged = 0; while (nNumChanged > 0 || bExamineAll) { nNumChanged = 0; // if (examineAll) // loop I over all the training examples // numChanged += examineExample(I) // else // loop I over I.0 // numChanged += examineExample(I) // % It is easy to check if optimality on I.0 is attained... // if (b.up > b.low - 2*tol) at any I // exit the loop after setting numChanged = 0 // endif if (bExamineAll) { for (int i = 0; i < m_nInstances; i++) { nNumChanged += examineExample(i); } } else { for (int i = m_I0.getNext(-1); i != -1; i = m_I0.getNext(i)) { nNumChanged += examineExample(i); if (m_bLow - m_bUp < 2 * m_fTolerance) { nNumChanged = 0; break; } } } // if (examineAll == 1) // examineAll = 0; // elseif (numChanged == 0) // examineAll = 1; // endif // endwhile //endprocedure if (bExamineAll) { bExamineAll = false; } else if (nNumChanged == 0) { bExamineAll = true; } } } /** * use variant 2 of Shevade's et al.s paper * * @throws Exception if something goes wrong */ protected void optimize2() throws Exception { //% main routine for modification 2 procedure main int nNumChanged = 0; boolean bExamineAll = true; // while (numChanged > 0 || examineAll) // numChanged = 0; while (nNumChanged > 0 || bExamineAll) { nNumChanged = 0; // if (examineAll) // loop I over all the training examples // numChanged += examineExample(I) // else // % The following loop is the only difference between the two // % SMO modifications. Whereas, modification 1, the type II // % loop selects i2 fro I.0 sequentially, here i2 is always // % set to the current i.low and i1 is set to the current i.up; // % clearly, this corresponds to choosing the worst violating // % pair using members of I.0 and some other indices // inner.loop.success = 1; // do // i2 = i.low // alpha2, alpha2' = Lagrange multipliers for i2 // F2 = f-cache[i2] // i1 = i.up // inner.loop.success = takeStep(i.up, i.low) // numChanged += inner.loop.success // until ( (b.up > b.low - 2*tol) || inner.loop.success == 0) // numChanged = 0; // endif if (bExamineAll) { for (int i = 0; i < m_nInstances; i++) { nNumChanged += examineExample(i); } } else { boolean bInnerLoopSuccess = true; do { if (takeStep(m_iUp, m_iLow, m_alpha[m_iLow], m_alphaStar[m_iLow], m_error[m_iLow]) > 0) { bInnerLoopSuccess = true; nNumChanged += 1; } else { bInnerLoopSuccess = false; } } while ((m_bUp <= m_bLow - 2 * m_fTolerance) && bInnerLoopSuccess); nNumChanged = 0; } // // if (examineAll == 1) // examineAll = 0 // elseif (numChanged == 0) // examineAll = 1 // endif // endwhile //endprocedure // if (bExamineAll) { bExamineAll = false; } else if (nNumChanged == 0) { bExamineAll = true; } } } /** * wrap up various variables to save memeory and do some housekeeping after optimization * has finished. * * @throws Exception if something goes wrong */ protected void wrapUp() throws Exception { m_b = -(m_bLow + m_bUp) / 2.0; m_target = null; m_error = null; super.wrapUp(); } /** * learn SVM parameters from data using Keerthi's SMO algorithm. * Subclasses should implement something more interesting. * * @param instances the data to work with * @throws Exception if something goes wrong */ public void buildClassifier(Instances instances) throws Exception { // initialize variables init(instances); // solve optimization problem if (m_bUseVariant1) { optimize1(); } else { optimize2(); } // clean up wrapUp(); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -