📄 votedperceptron.java
字号:
* @param insts the data to train the classifier with * @throws Exception if something goes wrong during building */ public void buildClassifier(Instances insts) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(insts); // remove instances with missing class insts = new Instances(insts); insts.deleteWithMissingClass(); // Filter data m_Train = new Instances(insts); m_ReplaceMissingValues = new ReplaceMissingValues(); m_ReplaceMissingValues.setInputFormat(m_Train); m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues); m_NominalToBinary = new NominalToBinary(); m_NominalToBinary.setInputFormat(m_Train); m_Train = Filter.useFilter(m_Train, m_NominalToBinary); /** Randomize training data */ m_Train.randomize(new Random(m_Seed)); /** Make space to store perceptrons */ m_Additions = new int[m_MaxK + 1]; m_IsAddition = new boolean[m_MaxK + 1]; m_Weights = new int[m_MaxK + 1]; /** Compute perceptrons */ m_K = 0; out: for (int it = 0; it < m_NumIterations; it++) { for (int i = 0; i < m_Train.numInstances(); i++) { Instance inst = m_Train.instance(i); if (!inst.classIsMissing()) { int prediction = makePrediction(m_K, inst); int classValue = (int) inst.classValue(); if (prediction == classValue) { m_Weights[m_K]++; } else { m_IsAddition[m_K] = (classValue == 1); m_Additions[m_K] = i; m_K++; m_Weights[m_K]++; } if (m_K == m_MaxK) { break out; } } } } } /** * Outputs the distribution for the given output. * * Pipes output of SVM through sigmoid function. * @param inst the instance for which distribution is to be computed * @return the distribution * @throws Exception if something goes wrong */ public double[] distributionForInstance(Instance inst) throws Exception { // Filter instance m_ReplaceMissingValues.input(inst); m_ReplaceMissingValues.batchFinished(); inst = m_ReplaceMissingValues.output(); m_NominalToBinary.input(inst); m_NominalToBinary.batchFinished(); inst = m_NominalToBinary.output(); // Get probabilities double output = 0, sumSoFar = 0; if (m_K > 0) { for (int i = 0; i <= m_K; i++) { if (sumSoFar < 0) { output -= m_Weights[i]; } else { output += m_Weights[i]; } if (m_IsAddition[i]) { sumSoFar += innerProduct(m_Train.instance(m_Additions[i]), inst); } else { sumSoFar -= innerProduct(m_Train.instance(m_Additions[i]), inst); } } } double[] result = new double[2]; result[1] = 1 / (1 + Math.exp(-output)); result[0] = 1 - result[1]; return result; } /** * Returns textual description of classifier. * * @return the model as string */ public String toString() { return "VotedPerceptron: Number of perceptrons=" + m_K; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String maxKTipText() { return "The maximum number of alterations to the perceptron."; } /** * Get the value of maxK. * * @return Value of maxK. */ public int getMaxK() { return m_MaxK; } /** * Set the value of maxK. * * @param v Value to assign to maxK. */ public void setMaxK(int v) { m_MaxK = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numIterationsTipText() { return "Number of iterations to be performed."; } /** * Get the value of NumIterations. * * @return Value of NumIterations. */ public int getNumIterations() { return m_NumIterations; } /** * Set the value of NumIterations. * * @param v Value to assign to NumIterations. */ public void setNumIterations(int v) { m_NumIterations = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String exponentTipText() { return "Exponent for the polynomial kernel."; } /** * Get the value of exponent. * * @return Value of exponent. */ public double getExponent() { return m_Exponent; } /** * Set the value of exponent. * * @param v Value to assign to exponent. */ public void setExponent(double v) { m_Exponent = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "Seed for the random number generator."; } /** * Get the value of Seed. * * @return Value of Seed. */ public int getSeed() { return m_Seed; } /** * Set the value of Seed. * * @param v Value to assign to Seed. */ public void setSeed(int v) { m_Seed = v; } /** * Computes the inner product of two instances * * @param i1 first instance * @param i2 second instance * @return the inner product * @throws Exception if computation fails */ private double innerProduct(Instance i1, Instance i2) throws Exception { // we can do a fast dot product double result = 0; int n1 = i1.numValues(); int n2 = i2.numValues(); int classIndex = m_Train.classIndex(); for (int p1 = 0, p2 = 0; p1 < n1 && p2 < n2;) { int ind1 = i1.index(p1); int ind2 = i2.index(p2); if (ind1 == ind2) { if (ind1 != classIndex) { result += i1.valueSparse(p1) * i2.valueSparse(p2); } p1++; p2++; } else if (ind1 > ind2) { p2++; } else { p1++; } } result += 1.0; if (m_Exponent != 1) { return Math.pow(result, m_Exponent); } else { return result; } } /** * Compute a prediction from a perceptron * * @param k * @param inst the instance to make a prediction for * @return the prediction * @throws Exception if computation fails */ private int makePrediction(int k, Instance inst) throws Exception { double result = 0; for (int i = 0; i < k; i++) { if (m_IsAddition[i]) { result += innerProduct(m_Train.instance(m_Additions[i]), inst); } else { result -= innerProduct(m_Train.instance(m_Additions[i]), inst); } } if (result < 0) { return 0; } else { return 1; } } /** * Main method. * * @param argv the commandline options */ public static void main(String[] argv) { runClassifier(new VotedPerceptron(), argv); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -