⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 管道及有名管道.txt

📁 这个资料非常不错
💻 TXT
📖 第 1 页 / 共 2 页
字号:
管道及有名管道

在本系列序中作者概述了 linux 进程间通信的几种主要手段。其中管道和有名管道是最早的进程间通信机制之一,管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。 认清管道和有名管道的读写规则是在程序中应用它们的关键,本文在详细讨论了管道和有名管道的通信机制的基础上,用实例对其读写规则进行了程序验证,这样做有利于增强读者对读写规则的感性认识,同时也提供了应用范例。
1、 管道概述及相关API应用
1.1 管道相关的关键概念
管道是Linux支持的最初Unix IPC形式之一,具有以下特点:
* 管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道; 
* 只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程); 
* 单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。 
* 数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。 
1.2管道的创建:
#include <unistd.h>
int pipe(int fd[2])
该函数创建的管道的两端处于一个进程中间,在实际应用中没有太大意义,因此,一个进程在由pipe()创建管道后,一般再fork一个子进程,然后通过管道实现父子进程间的通信(因此也不难推出,只要两个进程中存在亲缘关系,这里的亲缘关系指的是具有共同的祖先,都可以采用管道方式来进行通信)。
1.3管道的读写规则:
管道两端可分别用描述字fd[0]以及fd[1]来描述,需要注意的是,管道的两端是固定了任务的。即一端只能用于读,由描述字fd[0]表示,称其为管道读端;另一端则只能用于写,由描述字fd[1]来表示,称其为管道写端。如果试图从管道写端读取数据,或者向管道读端写入数据都将导致错误发生。一般文件的I/O函数都可以用于管道,如close、read、write等等。
从管道中读取数据:
* 如果管道的写端不存在,则认为已经读到了数据的末尾,读函数返回的读出字节数为0; 
* 当管道的写端存在时,如果请求的字节数目大于PIPE_BUF,则返回管道中现有的数据字节数,如果请求的字节数目不大于PIPE_BUF,则返回管道中现有数据字节数(此时,管道中数据量小于请求的数据量);或者返回请求的字节数(此时,管道中数据量不小于请求的数据量)。注:(PIPE_BUF在include/linux/limits.h中定义,不同的内核版本可能会有所不同。Posix.1要求PIPE_BUF至少为512字节,red hat 7.2中为4096)。 
关于管道的读规则验证:

/**************
 * readtest.c *
 **************/
#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
main()
{
	int pipe_fd[2];
	pid_t pid;
	char r_buf[100];
	char w_buf[4];
	char* p_wbuf;
	int r_num;
	int cmd;
	
	memset(r_buf,0,sizeof(r_buf));
	memset(w_buf,0,sizeof(r_buf));
	p_wbuf=w_buf;
	if(pipe(pipe_fd)<0)
	{
		printf("pipe create error\n");
		return -1;
	}
	
	if((pid=fork())==0)
	{
		printf("\n");
		close(pipe_fd[1]);
		sleep(3);//确保父进程关闭写端
	    r_num=read(pipe_fd[0],r_buf,100);
printf(	"read num is %d   the data read from the pipe is %d\n",r_num,atoi(r_buf));
		
		close(pipe_fd[0]);
		exit();
	}
	else if(pid>0)
	{
	close(pipe_fd[0]);//read
	strcpy(w_buf,"111");
	if(write(pipe_fd[1],w_buf,4)!=-1)
		printf("parent write over\n");
	close(pipe_fd[1]);//write
		printf("parent close fd[1] over\n");
	sleep(10);
	}	
}
 /**************************************************
 * 程序输出结果:
 * parent write over
 * parent close fd[1] over
 * read num is 4   the data read from the pipe is 111
 * 附加结论:
 * 管道写端关闭后,写入的数据将一直存在,直到读出为止.
 ****************************************************/ 
向管道中写入数据:
* 向管道中写入数据时,linux将不保证写入的原子性,管道缓冲区一有空闲区域,写进程就会试图向管道写入数据。如果读进程不读走管道缓冲区中的数据,那么写操作将一直阻塞。 
注:只有在管道的读端存在时,向管道中写入数据才有意义。否则,向管道中写入数据的进程将收到内核传来的SIFPIPE信号,应用程序可以处理该信号,也可以忽略(默认动作则是应用程序终止)。 
对管道的写规则的验证1:写端对读端存在的依赖性

#include <unistd.h>
#include <sys/types.h>
main()
{
	int pipe_fd[2];
	pid_t pid;
	char r_buf[4];
	char* w_buf;
	int writenum;
	int cmd;
	
	memset(r_buf,0,sizeof(r_buf));
	if(pipe(pipe_fd)<0)
	{
		printf("pipe create error\n");
		return -1;
	}
	
	if((pid=fork())==0)
	{
		close(pipe_fd[0]);
		close(pipe_fd[1]);
		sleep(10);	
		exit();
	}
	else if(pid>0)
	{
	sleep(1);  //等待子进程完成关闭读端的操作
	close(pipe_fd[0]);//write
	w_buf="111";
	if((writenum=write(pipe_fd[1],w_buf,4))==-1)
		printf("write to pipe error\n");
	else	
		printf("the bytes write to pipe is %d \n", writenum);
	
	close(pipe_fd[1]);
	}	
}
则输出结果为: Broken pipe,原因就是该管道以及它的所有fork()产物的读端都已经被关闭。如果在父进程中保留读端,即在写完pipe后,再关闭父进程的读端,也会正常写入pipe,读者可自己验证一下该结论。因此,在向管道写入数据时,至少应该存在某一个进程,其中管道读端没有被关闭,否则就会出现上述错误(管道断裂,进程收到了SIGPIPE信号,默认动作是进程终止)
对管道的写规则的验证2:linux不保证写管道的原子性验证

#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
main(int argc,char**argv)
{
	int pipe_fd[2];
	pid_t pid;
	char r_buf[4096];
	char w_buf[4096*2];
	int writenum;
	int rnum;
	memset(r_buf,0,sizeof(r_buf));	
	if(pipe(pipe_fd)<0)
	{
		printf("pipe create error\n");
		return -1;
	}
	
	if((pid=fork())==0)
	{
		close(pipe_fd[1]);
		while(1)
		{
		sleep(1);	
		rnum=read(pipe_fd[0],r_buf,1000);
		printf("child: readnum is %d\n",rnum);
		}
		close(pipe_fd[0]);
		
		exit();
	}
	else if(pid>0)
	{
	close(pipe_fd[0]);//write
	memset(r_buf,0,sizeof(r_buf));	
	if((writenum=write(pipe_fd[1],w_buf,1024))==-1)
		printf("write to pipe error\n");
	else	
		printf("the bytes write to pipe is %d \n", writenum);
	writenum=write(pipe_fd[1],w_buf,4096);
	close(pipe_fd[1]);
	}	
}

输出结果:
the bytes write to pipe 1000
the bytes write to pipe 1000  //注意,此行输出说明了写入的非原子性
the bytes write to pipe 1000
the bytes write to pipe 1000
the bytes write to pipe 1000
the bytes write to pipe 120  //注意,此行输出说明了写入的非原子性
the bytes write to pipe 0
the bytes write to pipe 0
......
结论:
写入数目小于4096时写入是非原子的!
如果把父进程中的两次写入字节数都改为5000,则很容易得出下面结论:
写入管道的数据量大于4096字节时,缓冲区的空闲空间将被写入数据(补齐),直到写完所有数据为止,如果没有进程读数据,则一直阻塞。
1.4管道应用实例:
实例一:用于shell
管道可用于输入输出重定向,它将一个命令的输出直接定向到另一个命令的输入。比如,当在某个shell程序(Bourne shell或C shell等)键入who│wc -l后,相应shell程序将创建who以及wc两个进程和这两个进程间的管道。考虑下面的命令行:
$kill -l 运行结果见附一。
$kill -l | grep SIGRTMIN 运行结果如下:

30) SIGPWR	31) SIGSYS	32) SIGRTMIN	33) SIGRTMIN+1
34) SIGRTMIN+2	35) SIGRTMIN+3	36) SIGRTMIN+4	37) SIGRTMIN+5
38) SIGRTMIN+6	39) SIGRTMIN+7	40) SIGRTMIN+8	41) SIGRTMIN+9
42) SIGRTMIN+10	43) SIGRTMIN+11	44) SIGRTMIN+12	45) SIGRTMIN+13
46) SIGRTMIN+14	47) SIGRTMIN+15	48) SIGRTMAX-15	49) SIGRTMAX-14
实例二:用于具有亲缘关系的进程间通信
下面例子给出了管道的具体应用,父进程通过管道发送一些命令给子进程,子进程解析命令,并根据命令作相应处理。

#include <unistd.h>
#include <sys/types.h>
main()
{
	int pipe_fd[2];
	pid_t pid;
	char r_buf[4];
	char** w_buf[256];
	int childexit=0;
	int i;
	int cmd;
	
	memset(r_buf,0,sizeof(r_buf));

	if(pipe(pipe_fd)<0)
	{
		printf("pipe create error\n");
		return -1;
	}
	if((pid=fork())==0)
	//子进程:解析从管道中获取的命令,并作相应的处理
	{
		printf("\n");
		close(pipe_fd[1]);
		sleep(2);
		
		while(!childexit)
		{	
			read(pipe_fd[0],r_buf,4);
			cmd=atoi(r_buf);
			if(cmd==0)
			{
printf("child: receive command from parent over\n now child process exit\n");
				childexit=1;
			}
			
		       else if(handle_cmd(cmd)!=0)
				return;
			sleep(1);
		}
		close(pipe_fd[0]);
		exit();
	}
	else if(pid>0)
	//parent: send commands to child
	{
	close(pipe_fd[0]);

	w_buf[0]="003";
	w_buf[1]="005";
	w_buf[2]="777";
	w_buf[3]="000";
	for(i=0;i<4;i++)
		write(pipe_fd[1],w_buf[i],4);
	close(pipe_fd[1]);
	}	
}
//下面是子进程的命令处理函数(特定于应用):
int handle_cmd(int cmd)
{

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -