⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_lwr_1d.m

📁 强局部加权回归算法由Cleveland[7]提出,主要利用局部观测数据对欲拟合点进行多项式加权拟合,并用最小二乘法进行估计.它综合了传统的局部多项式拟合,局部加权回归以及具有强鲁棒性的拟合过程
💻 M
字号:
function test_lwr_1D% test for 1D data set; due to globally optimized distance metric,% one can observe overfitting in the flat parts of the functionn = 100;% a random training setX = rand(n,1);Y = X - sin(2*pi*X.^3).*cos(2*pi*X.^3).*exp(X.^4) + randn(n,1)*0.1;% a systematic test setXt = (0:.01:1)';Yt = Xt - sin(2*pi*Xt.^3).*cos(2*pi*Xt.^3).*exp(Xt.^4);% find the optimal distance metric by cross validationDmin = 10;Dmax = 10000;n_iter = 50;for j=0:n_iter,	D = Dmin-1 + exp(log(Dmax-(Dmin-1))/n_iter*j);	mse_cv = 0;	for i=1:n,		XX=X;		YY=Y;		XX(i)=[];		YY(i)=[];		[beta,yq]=lwr(XX,YY,D,X(i)');		mse_cv = mse_cv+(Y(i)-yq)^2;	end	mse_cv = mse_cv/n;	R(j+1,:)=[D,mse_cv];	disp(sprintf('%3d: D=%f mse_cv=%f',j,D,mse_cv));end[val,ind] = min(R(:,2));D = R(ind,1);% create the final LWR fitYp = zeros(size(Yt));for i=1:length(Xt),	[beta,yq]=lwr(X,Y,D,Xt(i)');	Yp(i,1) = yq;endfigure(1);plot(X,Y,'*',Xt,[Yt Yp]);title(sprintf('Optimial D=%f',D));figure(2);plot(R(:,1),R(:,2));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -