⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cbzip2outputstream.java

📁 Use the links below to download a source distribution of Ant from one of our mirrors. It is good pra
💻 JAVA
📖 第 1 页 / 共 4 页
字号:
                /*                  Process big buckets, starting with the least full.                */                ss = runningOrder[i];                /*                  Complete the big bucket [ss] by quicksorting                  any unsorted small buckets [ss, j].  Hopefully                  previous pointer-scanning phases have already                  completed many of the small buckets [ss, j], so                  we don't have to sort them at all.                */                for (j = 0; j <= 255; j++) {                    sb = (ss << 8) + j;                    if (!((ftab[sb] & SETMASK) == SETMASK)) {                        int lo = ftab[sb] & CLEARMASK;                        int hi = (ftab[sb + 1] & CLEARMASK) - 1;                        if (hi > lo) {                            qSort3(lo, hi, 2);                            numQSorted += (hi - lo + 1);                            if (workDone > workLimit && firstAttempt) {                                return;                            }                        }                        ftab[sb] |= SETMASK;                    }                }                /*                  The ss big bucket is now done.  Record this fact,                  and update the quadrant descriptors.  Remember to                  update quadrants in the overshoot area too, if                  necessary.  The "if (i < 255)" test merely skips                  this updating for the last bucket processed, since                  updating for the last bucket is pointless.                */                bigDone[ss] = true;                if (i < 255) {                    int bbStart  = ftab[ss << 8] & CLEARMASK;                    int bbSize   = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart;                    int shifts   = 0;                    while ((bbSize >> shifts) > 65534) {                        shifts++;                    }                    for (j = 0; j < bbSize; j++) {                        int a2update = zptr[bbStart + j];                        int qVal = (j >> shifts);                        quadrant[a2update] = qVal;                        if (a2update < NUM_OVERSHOOT_BYTES) {                            quadrant[a2update + last + 1] = qVal;                        }                    }                    if (!(((bbSize - 1) >> shifts) <= 65535)) {                        panic();                    }                }                /*                  Now scan this big bucket so as to synthesise the                  sorted order for small buckets [t, ss] for all t != ss.                */                for (j = 0; j <= 255; j++) {                    copy[j] = ftab[(j << 8) + ss] & CLEARMASK;                }                for (j = ftab[ss << 8] & CLEARMASK;                     j < (ftab[(ss + 1) << 8] & CLEARMASK); j++) {                    c1 = block[zptr[j]];                    if (!bigDone[c1]) {                        zptr[copy[c1]] = zptr[j] == 0 ? last : zptr[j] - 1;                        copy[c1]++;                    }                }                for (j = 0; j <= 255; j++) {                    ftab[(j << 8) + ss] |= SETMASK;                }            }        }    }    private void randomiseBlock() {        int i;        int rNToGo = 0;        int rTPos  = 0;        for (i = 0; i < 256; i++) {            inUse[i] = false;        }        for (i = 0; i <= last; i++) {            if (rNToGo == 0) {                rNToGo = (char) rNums[rTPos];                rTPos++;                if (rTPos == 512) {                    rTPos = 0;                }            }            rNToGo--;            block[i + 1] ^= ((rNToGo == 1) ? 1 : 0);            // handle 16 bit signed numbers            block[i + 1] &= 0xFF;            inUse[block[i + 1]] = true;        }    }    private void doReversibleTransformation() {        int i;        workLimit = workFactor * last;        workDone = 0;        blockRandomised = false;        firstAttempt = true;        mainSort();        if (workDone > workLimit && firstAttempt) {            randomiseBlock();            workLimit = workDone = 0;            blockRandomised = true;            firstAttempt = false;            mainSort();        }        origPtr = -1;        for (i = 0; i <= last; i++) {            if (zptr[i] == 0) {                origPtr = i;                break;            }        };        if (origPtr == -1) {            panic();        }    }    private boolean fullGtU(int i1, int i2) {        int k;        char c1, c2;        int s1, s2;        c1 = block[i1 + 1];        c2 = block[i2 + 1];        if (c1 != c2) {            return (c1 > c2);        }        i1++;        i2++;        c1 = block[i1 + 1];        c2 = block[i2 + 1];        if (c1 != c2) {            return (c1 > c2);        }        i1++;        i2++;        c1 = block[i1 + 1];        c2 = block[i2 + 1];        if (c1 != c2) {            return (c1 > c2);        }        i1++;        i2++;        c1 = block[i1 + 1];        c2 = block[i2 + 1];        if (c1 != c2) {            return (c1 > c2);        }        i1++;        i2++;        c1 = block[i1 + 1];        c2 = block[i2 + 1];        if (c1 != c2) {            return (c1 > c2);        }        i1++;        i2++;        c1 = block[i1 + 1];        c2 = block[i2 + 1];        if (c1 != c2) {            return (c1 > c2);        }        i1++;        i2++;        k = last + 1;        do {            c1 = block[i1 + 1];            c2 = block[i2 + 1];            if (c1 != c2) {                return (c1 > c2);            }            s1 = quadrant[i1];            s2 = quadrant[i2];            if (s1 != s2) {                return (s1 > s2);            }            i1++;            i2++;            c1 = block[i1 + 1];            c2 = block[i2 + 1];            if (c1 != c2) {                return (c1 > c2);            }            s1 = quadrant[i1];            s2 = quadrant[i2];            if (s1 != s2) {                return (s1 > s2);            }            i1++;            i2++;            c1 = block[i1 + 1];            c2 = block[i2 + 1];            if (c1 != c2) {                return (c1 > c2);            }            s1 = quadrant[i1];            s2 = quadrant[i2];            if (s1 != s2) {                return (s1 > s2);            }            i1++;            i2++;            c1 = block[i1 + 1];            c2 = block[i2 + 1];            if (c1 != c2) {                return (c1 > c2);            }            s1 = quadrant[i1];            s2 = quadrant[i2];            if (s1 != s2) {                return (s1 > s2);            }            i1++;            i2++;            if (i1 > last) {                i1 -= last;                i1--;            };            if (i2 > last) {                i2 -= last;                i2--;            };            k -= 4;            workDone++;        } while (k >= 0);        return false;    }    /*      Knuth's increments seem to work better      than Incerpi-Sedgewick here.  Possibly      because the number of elems to sort is      usually small, typically <= 20.    */    private int[] incs = {1, 4, 13, 40, 121, 364, 1093, 3280,                           9841, 29524, 88573, 265720,                           797161, 2391484};    private void allocateCompressStructures () {        int n = baseBlockSize * blockSize100k;        block = new char[(n + 1 + NUM_OVERSHOOT_BYTES)];        quadrant = new int[(n + NUM_OVERSHOOT_BYTES)];        zptr = new int[n];        ftab = new int[65537];        if (block == null || quadrant == null || zptr == null            || ftab == null) {            //int totalDraw = (n + 1 + NUM_OVERSHOOT_BYTES) + (n + NUM_OVERSHOOT_BYTES) + n + 65537;            //compressOutOfMemory ( totalDraw, n );        }        /*          The back end needs a place to store the MTF values          whilst it calculates the coding tables.  We could          put them in the zptr array.  However, these values          will fit in a short, so we overlay szptr at the          start of zptr, in the hope of reducing the number          of cache misses induced by the multiple traversals          of the MTF values when calculating coding tables.          Seems to improve compression speed by about 1%.        */        //    szptr = zptr;        szptr = new short[2 * n];    }    private void generateMTFValues() {        char[] yy = new char[256];        int  i, j;        char tmp;        char tmp2;        int zPend;        int wr;        int EOB;        makeMaps();        EOB = nInUse + 1;        for (i = 0; i <= EOB; i++) {            mtfFreq[i] = 0;        }        wr = 0;        zPend = 0;        for (i = 0; i < nInUse; i++) {            yy[i] = (char) i;        }        for (i = 0; i <= last; i++) {            char ll_i;            ll_i = unseqToSeq[block[zptr[i]]];            j = 0;            tmp = yy[j];            while (ll_i != tmp) {                j++;                tmp2 = tmp;                tmp = yy[j];                yy[j] = tmp2;            };            yy[0] = tmp;            if (j == 0) {                zPend++;            } else {                if (zPend > 0) {                    zPend--;                    while (true) {                        switch (zPend % 2) {                        case 0:                            szptr[wr] = (short) RUNA;                            wr++;                            mtfFreq[RUNA]++;                            break;                        case 1:                            szptr[wr] = (short) RUNB;                            wr++;                            mtfFreq[RUNB]++;                            break;                        };                        if (zPend < 2) {                            break;                        }                        zPend = (zPend - 2) / 2;                    };                    zPend = 0;                }                szptr[wr] = (short) (j + 1);                wr++;                mtfFreq[j + 1]++;            }        }        if (zPend > 0) {            zPend--;            while (true) {                switch (zPend % 2) {                case 0:                    szptr[wr] = (short) RUNA;                    wr++;                    mtfFreq[RUNA]++;                    break;                case 1:                    szptr[wr] = (short) RUNB;                    wr++;                    mtfFreq[RUNB]++;                    break;                }                if (zPend < 2) {                    break;                }                zPend = (zPend - 2) / 2;            }        }        szptr[wr] = (short) EOB;        wr++;        mtfFreq[EOB]++;        nMTF = wr;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -