📄 xdelta3-fgk.h
字号:
/* xdelta 3 - delta compression tools and library * Copyright (C) 2002, 2006, 2007. Joshua P. MacDonald * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *//* For demonstration purposes only. */#ifndef _XDELTA3_FGK_h_#define _XDELTA3_FGK_h_/* An implementation of the FGK algorithm described by D.E. Knuth in * "Dynamic Huffman Coding" in Journal of Algorithms 6. *//* A 32bit counter (fgk_weight) is used as the frequency counter for * nodes in the huffman tree. TODO: Need oto test for overflow and/or * reset stats. */typedef struct _fgk_stream fgk_stream;typedef struct _fgk_node fgk_node;typedef struct _fgk_block fgk_block;typedef unsigned int fgk_bit;typedef uint32_t fgk_weight;struct _fgk_block { union { fgk_node *un_leader; fgk_block *un_freeptr; } un;};#define block_leader un.un_leader#define block_freeptr un.un_freeptr/* The code can also support fixed huffman encoding/decoding. */#define IS_ADAPTIVE 1/* weight is a count of the number of times this element has been seen * in the current encoding/decoding. parent, right_child, and * left_child are pointers defining the tree structure. right and * left point to neighbors in an ordered sequence of weights. The * left child of a node is always guaranteed to have weight not * greater than its sibling. fgk_blockLeader points to the element * with the same weight as itself which is closest to the next * increasing weight block. */struct _fgk_node{ fgk_weight weight; fgk_node *parent; fgk_node *left_child; fgk_node *right_child; fgk_node *left; fgk_node *right; fgk_block *my_block;};/* alphabet_size is the a count of the number of possible leaves in * the huffman tree. The number of total nodes counting internal * nodes is ((2 * alphabet_size) - 1). zero_freq_count is the number * of elements remaining which have zero frequency. zero_freq_exp and * zero_freq_rem satisfy the equation zero_freq_count = * 2^zero_freq_exp + zero_freq_rem. root_node is the root of the * tree, which is initialized to a node with zero frequency and * contains the 0th such element. free_node contains a pointer to the * next available fgk_node space. alphabet contains all the elements * and is indexed by N. remaining_zeros points to the head of the * list of zeros. */struct _fgk_stream{ int alphabet_size; int zero_freq_count; int zero_freq_exp; int zero_freq_rem; int coded_depth; int total_nodes; int total_blocks; fgk_bit *coded_bits; fgk_block *block_array; fgk_block *free_block; fgk_node *decode_ptr; fgk_node *remaining_zeros; fgk_node *alphabet; fgk_node *root_node; fgk_node *free_node;};/*********************************************************************//* Encoder *//*********************************************************************/static fgk_stream* fgk_alloc (xd3_stream *stream /*, int alphabet_size */);static void fgk_init (fgk_stream *h);static int fgk_encode_data (fgk_stream *h, int n);static inline fgk_bit fgk_get_encoded_bit (fgk_stream *h);static int xd3_encode_fgk (xd3_stream *stream, fgk_stream *sec_stream, xd3_output *input, xd3_output *output, xd3_sec_cfg *cfg);/*********************************************************************//* Decoder *//*********************************************************************/static inline int fgk_decode_bit (fgk_stream *h, fgk_bit b);static int fgk_decode_data (fgk_stream *h);static void fgk_destroy (xd3_stream *stream, fgk_stream *h);static int xd3_decode_fgk (xd3_stream *stream, fgk_stream *sec_stream, const uint8_t **input, const uint8_t *const input_end, uint8_t **output, const uint8_t *const output_end);/*********************************************************************//* Private *//*********************************************************************/static unsigned int fgk_find_nth_zero (fgk_stream *h, int n);static int fgk_nth_zero (fgk_stream *h, int n);static void fgk_update_tree (fgk_stream *h, int n);static fgk_node* fgk_increase_zero_weight (fgk_stream *h, int n);static void fgk_eliminate_zero (fgk_stream* h, fgk_node *node);static void fgk_move_right (fgk_stream *h, fgk_node *node);static void fgk_promote (fgk_stream *h, fgk_node *node);static void fgk_init_node (fgk_node *node, int i, int size);static fgk_block* fgk_make_block (fgk_stream *h, fgk_node *l);static void fgk_free_block (fgk_stream *h, fgk_block *b);static void fgk_factor_remaining (fgk_stream *h);static inline void fgk_swap_ptrs (fgk_node **one, fgk_node **two);/*********************************************************************//* Basic Routines *//*********************************************************************//* returns an initialized huffman encoder for an alphabet with the * given size. returns NULL if enough memory cannot be allocated */static fgk_stream* fgk_alloc (xd3_stream *stream /*, int alphabet_size0 */){ int alphabet_size0 = ALPHABET_SIZE; fgk_stream *h; if ((h = (fgk_stream*) xd3_alloc (stream, 1, sizeof (fgk_stream))) == NULL) { return NULL; } h->total_nodes = (2 * alphabet_size0) - 1; h->total_blocks = (2 * h->total_nodes); h->alphabet = (fgk_node*) xd3_alloc (stream, h->total_nodes, sizeof (fgk_node)); h->block_array = (fgk_block*) xd3_alloc (stream, h->total_blocks, sizeof (fgk_block)); h->coded_bits = (fgk_bit*) xd3_alloc (stream, alphabet_size0, sizeof (fgk_bit)); if (h->coded_bits == NULL || h->alphabet == NULL || h->block_array == NULL) { fgk_destroy (stream, h); return NULL; } h->alphabet_size = alphabet_size0; return h;}static void fgk_init (fgk_stream *h){ int i; h->root_node = h->alphabet; h->decode_ptr = h->root_node; h->free_node = h->alphabet + h->alphabet_size; h->remaining_zeros = h->alphabet; h->coded_depth = 0; h->zero_freq_count = h->alphabet_size + 2; /* after two calls to factor_remaining, zero_freq_count == alphabet_size */ fgk_factor_remaining(h); /* set ZFE and ZFR */ fgk_factor_remaining(h); /* set ZFDB according to prev state */ IF_DEBUG (memset (h->alphabet, 0, sizeof (h->alphabet[0]) * h->total_nodes)); for (i = 0; i < h->total_blocks-1; i += 1) { h->block_array[i].block_freeptr = &h->block_array[i + 1]; } h->block_array[h->total_blocks - 1].block_freeptr = NULL; h->free_block = h->block_array; /* Zero frequency nodes are inserted in the first alphabet_size * positions, with Value, weight, and a pointer to the next zero * frequency node. */ for (i = h->alphabet_size - 1; i >= 0; i -= 1) { fgk_init_node (h->alphabet + i, i, h->alphabet_size); }}static void fgk_swap_ptrs(fgk_node **one, fgk_node **two){ fgk_node *tmp = *one; *one = *two; *two = tmp;}/* Takes huffman transmitter h and n, the nth elt in the alphabet, and * returns the number of required to encode n. */static int fgk_encode_data (fgk_stream* h, int n){ fgk_node *target_ptr = h->alphabet + n; XD3_ASSERT (n < h->alphabet_size); h->coded_depth = 0; /* First encode the binary representation of the nth remaining * zero frequency element in reverse such that bit, which will be * encoded from h->coded_depth down to 0 will arrive in increasing * order following the tree path. If there is only one left, it * is not neccesary to encode these bits. */ if (IS_ADAPTIVE && target_ptr->weight == 0) { unsigned int where, shift; int bits; where = fgk_find_nth_zero(h, n); shift = 1; if (h->zero_freq_rem == 0) { bits = h->zero_freq_exp; } else { bits = h->zero_freq_exp + 1; } while (bits > 0) { h->coded_bits[h->coded_depth++] = (shift & where) && 1; bits -= 1; shift <<= 1; }; target_ptr = h->remaining_zeros; } /* The path from root to node is filled into coded_bits in reverse so * that it is encoded in the right order */ while (target_ptr != h->root_node) { h->coded_bits[h->coded_depth++] = (target_ptr->parent->right_child == target_ptr); target_ptr = target_ptr->parent; } if (IS_ADAPTIVE) { fgk_update_tree(h, n); } return h->coded_depth;}/* Should be called as many times as fgk_encode_data returns. */static inline fgk_bit fgk_get_encoded_bit (fgk_stream *h){ XD3_ASSERT (h->coded_depth > 0); return h->coded_bits[--h->coded_depth];}/* This procedure updates the tree after alphabet[n] has been encoded * or decoded. */static void fgk_update_tree (fgk_stream *h, int n){ fgk_node *incr_node; if (h->alphabet[n].weight == 0) { incr_node = fgk_increase_zero_weight (h, n); } else { incr_node = h->alphabet + n; } while (incr_node != h->root_node) { fgk_move_right (h, incr_node); fgk_promote (h, incr_node); incr_node->weight += 1; /* incr the parent */ incr_node = incr_node->parent; /* repeat */ } h->root_node->weight += 1;}static void fgk_move_right (fgk_stream *h, fgk_node *move_fwd){ fgk_node **fwd_par_ptr, **back_par_ptr; fgk_node *move_back, *tmp; move_back = move_fwd->my_block->block_leader; if (move_fwd == move_back || move_fwd->parent == move_back || move_fwd->weight == 0) { return; } move_back->right->left = move_fwd; if (move_fwd->left) { move_fwd->left->right = move_back; } tmp = move_fwd->right; move_fwd->right = move_back->right; if (tmp == move_back) { move_back->right = move_fwd; } else { tmp->left = move_back; move_back->right = tmp; } tmp = move_back->left; move_back->left = move_fwd->left; if (tmp == move_fwd) { move_fwd->left = move_back; } else { tmp->right = move_fwd; move_fwd->left = tmp; } if (move_fwd->parent->right_child == move_fwd) { fwd_par_ptr = &move_fwd->parent->right_child; } else { fwd_par_ptr = &move_fwd->parent->left_child; } if (move_back->parent->right_child == move_back) { back_par_ptr = &move_back->parent->right_child; } else { back_par_ptr = &move_back->parent->left_child; } fgk_swap_ptrs (&move_fwd->parent, &move_back->parent); fgk_swap_ptrs (fwd_par_ptr, back_par_ptr); move_fwd->my_block->block_leader = move_fwd;}/* Shifts node, the leader of its block, into the next block. */static void fgk_promote (fgk_stream *h, fgk_node *node){ fgk_node *my_left, *my_right; fgk_block *cur_block; my_right = node->right; my_left = node->left; cur_block = node->my_block; if (node->weight == 0) { return; } /* if left is right child, parent of remaining zeros case (?), means parent * has same weight as right child. */ if (my_left == node->right_child && node->left_child && node->left_child->weight == 0) { XD3_ASSERT (node->left_child == h->remaining_zeros); XD3_ASSERT (node->right_child->weight == (node->weight+1)); /* child weight was already incremented */ if (node->weight == (my_right->weight - 1) && my_right != h->root_node) { fgk_free_block (h, cur_block); node->my_block = my_right->my_block; my_left->my_block = my_right->my_block; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -