📄 lmsar.m
字号:
function [LMSout,blms,Rsq]=LMSar(x,p)
%Syntax: [LMSout,blms,Rsq]=LMSar(x,p)
%_____________________________________
%
% Calculates the Least Median of Squares (LMS) autoregressive model
% of order p.
%
% LMSout is the LMS estimated values vector.
% blms is the AR LMS [intercept slopes] vector.
% Rsq is the R-squared.
% x is the time series.
% p is the odrer of AR.
%
% Reference:
% Rousseeuw PJ, Leroy AM (1987): Robust regression and outlier detection. Wiley.
%
%
% Alexandros Leontitsis
% Institute of Mathematics and Statistics
% University of Kent at Canterbury
% Canterbury
% Kent, CT2 7NF
% U.K.
%
% University e-mail: al10@ukc.ac.uk (until December 2002)
% Lifetime e-mail: leoaleq@yahoo.com
% Homepage: http://www.geocities.com/CapeCanaveral/Lab/1421
%
% Sep 3, 2001.
if nargin<1 | isempty(x)==1
error('Not enough input arguments.');
else
% x must be a vector
if min(size(x))>1
error('Invalid time series x.');
end
end
if nargin<2 | isempty(p)
% If p is omitted give it takes the value of 1
p=1;
else
% p must be a scalar
if sum(size(p))>2
error('p must be a scalar.');
end
% p must be a non-negative integrer
if round(p)-p~=0 | p<0
error('p must be a non-negative integrer');
end
end
n=length(x);
if n<=2*p
error('The time series length is too small for the given p.');
end
% Prepare the time series for LMS regression
for i=1:n-p
X(i,:)=x(i:i+p-1)';
y(i)=x(i+p);
end
% Perform the LMS regression
[LMSout,blms,Rsq]=LMSreg(y,X);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -