📄 lmdemo.c
字号:
jac[j++]=0.0; jac[j++]=0.0; jac[j++]=0.0; jac[j++]=0.0; jac[j++]=0.0; jac[j++]=1.0;}/* Schittkowski (modified) problem 235 (box/linearly constrained), minimum at (-1.725, 2.9, 0.725) * constr1: p[0] + p[2] = -1.0; * * To the above constraint, we add the following 2: * constr2: p[1] - 4*p[2] = 0; * constr3: 0.1 <= p[1] <= 2.9; * constr4: 0.7 <= p[2]; * */void mods235(double *p, double *x, int m, int n, void *data){ x[0]=0.1*(p[0]-1.0); x[1]=p[1]-p[0]*p[0];}void jacmods235(double *p, double *jac, int m, int n, void *data){register int j=0; jac[j++]=0.1; jac[j++]=0.0; jac[j++]=0.0; jac[j++]=-2.0*p[0]; jac[j++]=1.0; jac[j++]=0.0;}/* Boggs and Tolle modified problem 7 (box/linearly constrained), minimum at (0.7, 0.49, 0.19, 1.19, -0.2) * We keep the original objective function & starting point and use the following constraints: * * subject to cons1: * x[1]+x[2] - x[3] = 1.0; * subject to cons2: * x[2] - x[4] + x[1] = 0.0; * subject to cons3: * x[5] + x[1] = 0.5; * subject to cons4: * x[5]>=-0.3; * subject to cons5: * x[1]<=0.7; * */void modbt7(double *p, double *x, int m, int n, void *data){register int i; for(i=0; i<n; ++i) x[i]=100.0*(p[1]-p[0]*p[0])*(p[1]-p[0]*p[0]) + (p[0]-1.0)*(p[0]-1.0);}void jacmodbt7(double *p, double *jac, int m, int n, void *data){register int i, j; for(i=j=0; i<m; ++i){ jac[j++]=-400.0*(p[1]-p[0]*p[0])*p[0] + 2.0*p[0] - 2.0; jac[j++]=200.0*(p[1]-p[0]*p[0]); jac[j++]=0.0; jac[j++]=0.0; jac[j++]=0.0; }}/* Equilibrium combustion problem, constrained nonlinear equation from the book by Floudas et al. * Minimum at (0.0034, 31.3265, 0.0684, 0.8595, 0.0370) * constri: p[i]>=0.0001; (i=1..5) * constri+5: p[i]<=100.0; (i=1..5) */void combust(double *p, double *x, int m, int n, void *data){ double R, R5, R6, R7, R8, R9, R10; R=10; R5=0.193; R6=4.10622*1e-4; R7=5.45177*1e-4; R8=4.4975*1e-7; R9=3.40735*1e-5; R10=9.615*1e-7; x[0]=p[0]*p[1]+p[0]-3*p[4]; x[1]=2*p[0]*p[1]+p[0]+3*R10*p[1]*p[1]+p[1]*p[2]*p[2]+R7*p[1]*p[2]+R9*p[1]*p[3]+R8*p[1]-R*p[4]; x[2]=2*p[1]*p[2]*p[2]+R7*p[1]*p[2]+2*R5*p[2]*p[2]+R6*p[2]-8*p[4]; x[3]=R9*p[1]*p[3]+2*p[3]*p[3]-4*R*p[4]; x[4]=p[0]*p[1]+p[0]+R10*p[1]*p[1]+p[1]*p[2]*p[2]+R7*p[1]*p[2]+R9*p[1]*p[3]+R8*p[1]+R5*p[2]*p[2]+R6*p[2]+p[3]*p[3]-1.0;}void jaccombust(double *p, double *jac, int m, int n, void *data){register int j=0; double R, R5, R6, R7, R8, R9, R10; R=10; R5=0.193; R6=4.10622*1e-4; R7=5.45177*1e-4; R8=4.4975*1e-7; R9=3.40735*1e-5; R10=9.615*1e-7; for(j=0; j<m*n; ++j) jac[j]=0.0; j=0; jac[j]=p[1]+1; jac[j+1]=p[0]; jac[j+4]=-3; j+=m; jac[j]=2*p[1]+1; jac[j+1]=2*p[0]+6*R10*p[1]+p[2]*p[2]+R7*p[2]+R9*p[3]+R8; jac[j+2]=2*p[1]*p[2]+R7*p[1]; jac[j+3]=R9*p[1]; jac[j+4]=-R; j+=m; jac[j+1]=2*p[2]*p[2]+R7*p[2]; jac[j+2]=4*p[1]*p[2]+R7*p[1]+4*R5*p[2]+R6; jac[j+4]=-8; j+=m; jac[j+1]=R9*p[3]; jac[j+3]=R9*p[1]+4*p[3]; jac[j+4]=-4*R; j+=m; jac[j]=p[1]+1; jac[j+1]=p[0]+2*R10*p[1]+p[2]*p[2]+R7*p[2]+R9*p[3]+R8; jac[j+2]=2*p[1]*p[2]+R7*p[1]+2*R5*p[2]+R6; jac[j+3]=R9*p[1]+2*p[3];}int main(){register int i, j;int problem, ret;double p[5], // 6 is max(2, 3, 5) x[16]; // 16 is max(2, 3, 5, 6, 16)int m, n;double opts[LM_OPTS_SZ], info[LM_INFO_SZ];char *probname[]={ "Rosenbrock function", "modified Rosenbrock problem", "Powell's function", "Wood's function", "Meyer's (reformulated) problem", "helical valley function", "Boggs & Tolle's problem #3", "Hock - Schittkowski problem #28", "Hock - Schittkowski problem #48", "Hock - Schittkowski problem #51", "Hock - Schittkowski problem #01", "Hock - Schittkowski modified problem #21", "hatfldb problem", "hatfldc problem", "equilibrium combustion problem", "Hock - Schittkowski modified problem #52", "Schittkowski modified problem #235", "Boggs & Tolle modified problem #7",}; opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20; opts[4]=LM_DIFF_DELTA; // relevant only if the finite difference Jacobian version is used /* uncomment the appropriate line below to select a minimization problem */ problem= //0; // Rosenbrock function //1; // modified Rosenbrock problem //2; // Powell's function //3; // Wood's function 4; // Meyer's (reformulated) problem //5; // helical valley function#ifdef HAVE_LAPACK //6; // Boggs & Tolle's problem 3 //7; // Hock - Schittkowski problem 28 //8; // Hock - Schittkowski problem 48 //9; // Hock - Schittkowski problem 51#else // no LAPACK#ifdef _MSC_VER#pragma message("LAPACK not available, some test problems cannot be used")#else#warning LAPACK not available, some test problems cannot be used#endif // _MSC_VER#endif /* HAVE_LAPACK */ //10; // Hock - Schittkowski problem 01 //11; // Hock - Schittkowski modified problem 21 //12; // hatfldb problem //13; // hatfldc problem //14; // equilibrium combustion problem#ifdef HAVE_LAPACK //15; // Hock - Schittkowski modified problem 52 //16; // Schittkowski modified problem 235 //17; // Boggs & Tolle modified problem #7#endif /* HAVE_LAPACK */ switch(problem){ default: fprintf(stderr, "unknown problem specified (#%d)! Note that some minimization problems require LAPACK.\n", problem); exit(1); break; case 0: /* Rosenbrock function */ m=2; n=2; p[0]=-1.2; p[1]=1.0; for(i=0; i<n; i++) x[i]=0.0; ret=dlevmar_der(ros, jacros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian //ret=dlevmar_dif(ros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian break; case 1: /* modified Rosenbrock problem */ m=2; n=3; p[0]=-1.2; p[1]=1.0; for(i=0; i<n; i++) x[i]=0.0; ret=dlevmar_der(modros, jacmodros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian //ret=dlevmar_dif(modros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian break; case 2: /* Powell's function */ m=2; n=2; p[0]=3.0; p[1]=1.0; for(i=0; i<n; i++) x[i]=0.0; ret=dlevmar_der(powell, jacpowell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian //ret=dlevmar_dif(powell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian break; case 3: /* Wood's function */ m=4; n=6; p[0]=-3.0; p[1]=-1.0; p[2]=-3.0; p[3]=-1.0; for(i=0; i<n; i++) x[i]=0.0; ret=dlevmar_dif(wood, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian break; case 4: /* Meyer's data fitting problem */ m=3; n=16; p[0]=8.85; p[1]=4.0; p[2]=2.5; x[0]=34.780; x[1]=28.610; x[2]=23.650; x[3]=19.630; x[4]=16.370; x[5]=13.720; x[6]=11.540; x[7]=9.744; x[8]=8.261; x[9]=7.030; x[10]=6.005; x[11]=5.147; x[12]=4.427; x[13]=3.820; x[14]=3.307; x[15]=2.872; //ret=dlevmar_der(meyer, jacmeyer, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian { double *work, *covar; work=malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double)); if(!work){ fprintf(stderr, "memory allocation request failed in main()\n"); exit(1); } covar=work+LM_DIF_WORKSZ(m, n); ret=dlevmar_dif(meyer, p, x, m, n, 1000, opts, info, work, covar, NULL); // no Jacobian, caller allocates work memory, covariance estimated printf("Covariance of the fit:\n"); for(i=0; i<m; ++i){ for(j=0; j<m; ++j) printf("%g ", covar[i*m+j]); printf("\n"); } printf("\n"); free(work); }/* uncomment the following block to verify Jacobian *//* { double err[16]; dlevmar_chkjac(meyer, jacmeyer, p, m, n, NULL, err); for(i=0; i<n; ++i) printf("gradient %d, err %g\n", i, err[i]); }*/ break; case 5: /* helical valley function */ m=3; n=3; p[0]=-1.0; p[1]=0.0; p[2]=0.0; for(i=0; i<n; i++) x[i]=0.0; ret=dlevmar_der(helval, jachelval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian //ret=dlevmar_dif(helval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian break;#ifdef HAVE_LAPACK case 6: /* Boggs-Tolle problem 3 */ m=5; n=5; p[0]=2.0; p[1]=2.0; p[2]=2.0; p[3]=2.0; p[4]=2.0; for(i=0; i<n; i++) x[i]=0.0; { double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -2.0, 0.0, 1.0, 0.0, 0.0, -1.0}, b[3]={0.0, 0.0, 0.0}; ret=dlevmar_lec_der(bt3, jacbt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian //ret=dlevmar_lec_dif(bt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian } break; case 7: /* Hock - Schittkowski problem 28 */ m=3; n=3; p[0]=-4.0; p[1]=1.0; p[2]=1.0; for(i=0; i<n; i++) x[i]=0.0; { double A[1*3]={1.0, 2.0, 3.0}, b[1]={1.0}; ret=dlevmar_lec_der(hs28, jachs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian //ret=dlevmar_lec_dif(hs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian } break; case 8: /* Hock - Schittkowski problem 48 */ m=5; n=5; p[0]=3.0; p[1]=5.0; p[2]=-3.0; p[3]=2.0; p[4]=-2.0; for(i=0; i<n; i++) x[i]=0.0; { double A[2*5]={1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, -2.0, -2.0}, b[2]={5.0, -3.0}; ret=dlevmar_lec_der(hs48, jachs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian //ret=dlevmar_lec_dif(hs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian } break; case 9: /* Hock - Schittkowski problem 51 */ m=5; n=5; p[0]=2.5; p[1]=0.5; p[2]=2.0; p[3]=-1.0; p[4]=0.5; for(i=0; i<n; i++) x[i]=0.0; { double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -2.0, 0.0, 1.0, 0.0, 0.0, -1.0}, b[3]={4.0, 0.0, 0.0}; ret=dlevmar_lec_der(hs51, jachs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian //ret=dlevmar_lec_dif(hs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian } break;#endif /* HAVE_LAPACK */ case 10: /* Hock - Schittkowski problem 01 */ m=2; n=2; p[0]=-2.0; p[1]=1.0; for(i=0; i<n; i++) x[i]=0.0; //ret=dlevmar_der(hs01, jachs01, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian { double lb[2], ub[2]; lb[0]=-DBL_MAX; lb[1]=-1.5; ub[0]=ub[1]=DBL_MAX; ret=dlevmar_bc_der(hs01, jachs01, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian } break; case 11: /* Hock - Schittkowski (modified) problem 21 */ m=2; n=2; p[0]=-1.0; p[1]=-1.0; for(i=0; i<n; i++) x[i]=0.0; //ret=dlevmar_der(hs21, jachs21, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian { double lb[2], ub[2]; lb[0]=2.0; lb[1]=-50.0; ub[0]=50.0; ub[1]=50.0; ret=dlevmar_bc_der(hs21, jachs21, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian } break; case 12: /* hatfldb problem */ m=4; n=4; p[0]=p[1]=p[2]=p[3]=0.1; for(i=0; i<n; i++) x[i]=0.0; //ret=dlevmar_der(hatfldb, jachatfldb, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian { double lb[4], ub[4]; lb[0]=lb[1]=lb[2]=lb[3]=0.0; ub[0]=ub[2]=ub[3]=DBL_MAX; ub[1]=0.8; ret=dlevmar_bc_der(hatfldb, jachatfldb, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian } break; case 13: /* hatfldc problem */ m=4; n=4; p[0]=p[1]=p[2]=p[3]=0.9; for(i=0; i<n; i++) x[i]=0.0; //ret=dlevmar_der(hatfldc, jachatfldc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian { double lb[4], ub[4]; lb[0]=lb[1]=lb[2]=lb[3]=0.0; ub[0]=ub[1]=ub[2]=ub[3]=10.0; ret=dlevmar_bc_der(hatfldc, jachatfldc, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian } break; case 14: /* equilibrium combustion problem */ m=5; n=5; p[0]=p[1]=p[2]=p[3]=p[4]=0.0001; for(i=0; i<n; i++) x[i]=0.0; //ret=dlevmar_der(combust, jaccombust, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian { double lb[5], ub[5]; lb[0]=lb[1]=lb[2]=lb[3]=lb[4]=0.0001; ub[0]=ub[1]=ub[2]=ub[3]=ub[4]=100.0; ret=dlevmar_bc_der(combust, jaccombust, p, x, m, n, lb, ub, 5000, opts, info, NULL, NULL, NULL); // with analytic Jacobian } break;#ifdef HAVE_LAPACK case 15: /* Hock - Schittkowski modified problem 52 */ m=5; n=4; p[0]=2.0; p[1]=2.0; p[2]=2.0; p[3]=2.0; p[4]=2.0; for(i=0; i<n; i++) x[i]=0.0; { double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -2.0, 0.0, 1.0, 0.0, 0.0, -1.0}, b[3]={0.0, 0.0, 0.0}; double lb[5], ub[5]; double weights[5]={2000.0, 2000.0, 2000.0, 2000.0, 2000.0}; // penalty terms weights lb[0]=-0.09; lb[1]=0.0; lb[2]=-DBL_MAX; lb[3]=-0.2; lb[4]=0.0; ub[0]=DBL_MAX; ub[1]=0.3; ub[2]=0.25; ub[3]=0.3; ub[4]=0.3; ret=dlevmar_blec_der(modhs52, jacmodhs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian //ret=dlevmar_blec_dif(modhs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian } break; case 16: /* Schittkowski modified problem 235 */ m=3; n=2; p[0]=-2.0; p[1]=3.0; p[2]=1.0; for(i=0; i<n; i++) x[i]=0.0; { double A[2*3]={1.0, 0.0, 1.0, 0.0, 1.0, -4.0}, b[2]={-1.0, 0.0}; double lb[3], ub[3]; lb[0]=-DBL_MAX; lb[1]=0.1; lb[2]=0.7; ub[0]=DBL_MAX; ub[1]=2.9; ub[2]=DBL_MAX; ret=dlevmar_blec_der(mods235, jacmods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian //ret=dlevmar_blec_dif(mods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian } break; case 17: /* Boggs & Tolle modified problem 7 */ m=5; n=5; p[0]=-2.0; p[1]=1.0; p[2]=1.0; p[3]=1.0; p[4]=1.0; for(i=0; i<n; i++) x[i]=0.0; { double A[3*5]={1.0, 1.0, -1.0, 0.0, 0.0, 1.0, 1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0}, b[3]={1.0, 0.0, 0.5}; double lb[5], ub[5]; lb[0]=-DBL_MAX; lb[1]=-DBL_MAX; lb[2]=-DBL_MAX; lb[3]=-DBL_MAX; lb[4]=-0.3; ub[0]=0.7; ub[1]= DBL_MAX; ub[2]= DBL_MAX; ub[3]= DBL_MAX; ub[4]=DBL_MAX; ret=dlevmar_blec_der(modbt7, jacmodbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian //ret=dlevmar_blec_dif(modbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 10000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian } break;#endif /* HAVE_LAPACK */ } /* switch */ printf("Results for %s:\n", probname[problem]); printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution: ", ret, info[5], info[6]); for(i=0; i<m; ++i) printf("%.7g ", p[i]); printf("\n\nMinimization info:\n"); for(i=0; i<LM_INFO_SZ; ++i) printf("%g ", info[i]); printf("\n"); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -