📄 ptrace.c
字号:
/* * Kernel support for the ptrace() and syscall tracing interfaces. * * Copyright (C) 1999-2001 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * * Derived from the x86 and Alpha versions. Most of the code in here * could actually be factored into a common set of routines. */#include <linux/config.h>#include <linux/kernel.h>#include <linux/sched.h>#include <linux/mm.h>#include <linux/errno.h>#include <linux/ptrace.h>#include <linux/smp_lock.h>#include <linux/user.h>#include <asm/pgtable.h>#include <asm/processor.h>#include <asm/ptrace_offsets.h>#include <asm/rse.h>#include <asm/system.h>#include <asm/uaccess.h>#include <asm/unwind.h>/* * Bits in the PSR that we allow ptrace() to change: * be, up, ac, mfl, mfh (the user mask; five bits total) * db (debug breakpoint fault; one bit) * id (instruction debug fault disable; one bit) * dd (data debug fault disable; one bit) * ri (restart instruction; two bits) * is (instruction set; one bit) */#define IPSR_WRITE_MASK \ (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)#define IPSR_READ_MASK IPSR_WRITE_MASK#define PTRACE_DEBUG 1#if PTRACE_DEBUG# define dprintk(format...) printk(format)# define inline#else# define dprintk(format...)#endif/* * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT * bitset where bit i is set iff the NaT bit of register i is set. */unsigned longia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat){# define GET_BITS(first, last, unat) \ ({ \ unsigned long bit = ia64_unat_pos(&pt->r##first); \ unsigned long mask = ((1UL << (last - first + 1)) - 1) << first; \ (ia64_rotl(unat, first) >> bit) & mask; \ }) unsigned long val; val = GET_BITS( 1, 3, scratch_unat); val |= GET_BITS(12, 15, scratch_unat); val |= GET_BITS( 8, 11, scratch_unat); val |= GET_BITS(16, 31, scratch_unat); return val;# undef GET_BITS}/* * Set the NaT bits for the scratch registers according to NAT and * return the resulting unat (assuming the scratch registers are * stored in PT). */unsigned longia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat){ unsigned long scratch_unat;# define PUT_BITS(first, last, nat) \ ({ \ unsigned long bit = ia64_unat_pos(&pt->r##first); \ unsigned long mask = ((1UL << (last - first + 1)) - 1) << bit; \ (ia64_rotr(nat, first) << bit) & mask; \ }) scratch_unat = PUT_BITS( 1, 3, nat); scratch_unat |= PUT_BITS(12, 15, nat); scratch_unat |= PUT_BITS( 8, 11, nat); scratch_unat |= PUT_BITS(16, 31, nat); return scratch_unat;# undef PUT_BITS}#define IA64_MLX_TEMPLATE 0x2#define IA64_MOVL_OPCODE 6voidia64_increment_ip (struct pt_regs *regs){ unsigned long w0, ri = ia64_psr(regs)->ri + 1; if (ri > 2) { ri = 0; regs->cr_iip += 16; } else if (ri == 2) { get_user(w0, (char *) regs->cr_iip + 0); if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { /* * rfi'ing to slot 2 of an MLX bundle causes * an illegal operation fault. We don't want * that to happen... */ ri = 0; regs->cr_iip += 16; } } ia64_psr(regs)->ri = ri;}voidia64_decrement_ip (struct pt_regs *regs){ unsigned long w0, ri = ia64_psr(regs)->ri - 1; if (ia64_psr(regs)->ri == 0) { regs->cr_iip -= 16; ri = 2; get_user(w0, (char *) regs->cr_iip + 0); if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { /* * rfi'ing to slot 2 of an MLX bundle causes * an illegal operation fault. We don't want * that to happen... */ ri = 1; } } ia64_psr(regs)->ri = ri;}/* * This routine is used to read an rnat bits that are stored on the kernel backing store. * Since, in general, the alignment of the user and kernel are different, this is not * completely trivial. In essence, we need to construct the user RNAT based on up to two * kernel RNAT values and/or the RNAT value saved in the child's pt_regs. * * user rbs * * +--------+ <-- lowest address * | slot62 | * +--------+ * | rnat | 0x....1f8 * +--------+ * | slot00 | \ * +--------+ | * | slot01 | > child_regs->ar_rnat * +--------+ | * | slot02 | / kernel rbs * +--------+ +--------+ * <- child_regs->ar_bspstore | slot61 | <-- krbs * +- - - - + +--------+ * | slot62 | * +- - - - + +--------+ * | rnat | * +- - - - + +--------+ * vrnat | slot00 | * +- - - - + +--------+ * = = * +--------+ * | slot00 | \ * +--------+ | * | slot01 | > child_stack->ar_rnat * +--------+ | * | slot02 | / * +--------+ * <--- child_stack->ar_bspstore * * The way to think of this code is as follows: bit 0 in the user rnat corresponds to some * bit N (0 <= N <= 62) in one of the kernel rnat value. The kernel rnat value holding * this bit is stored in variable rnat0. rnat1 is loaded with the kernel rnat value that * form the upper bits of the user rnat value. * * Boundary cases: * * o when reading the rnat "below" the first rnat slot on the kernel backing store, * rnat0/rnat1 are set to 0 and the low order bits are merged in from pt->ar_rnat. * * o when reading the rnat "above" the last rnat slot on the kernel backing store, * rnat0/rnat1 gets its value from sw->ar_rnat. */static unsigned longget_rnat (struct pt_regs *pt, struct switch_stack *sw, unsigned long *krbs, unsigned long *urnat_addr){ unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr, kmask = ~0UL; unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; long num_regs; kbsp = (unsigned long *) sw->ar_bspstore; ubspstore = (unsigned long *) pt->ar_bspstore; /* * First, figure out which bit number slot 0 in user-land maps * to in the kernel rnat. Do this by figuring out how many * register slots we're beyond the user's backingstore and * then computing the equivalent address in kernel space. */ num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); shift = ia64_rse_slot_num(slot0_kaddr); rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); rnat0_kaddr = rnat1_kaddr - 64; if (ubspstore + 63 > urnat_addr) { /* some bits need to be merged in from pt->ar_rnat */ kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1); urnat = (pt->ar_rnat & ~kmask); } if (rnat0_kaddr >= kbsp) { rnat0 = sw->ar_rnat; } else if (rnat0_kaddr > krbs) { rnat0 = *rnat0_kaddr; } if (rnat1_kaddr >= kbsp) { rnat1 = sw->ar_rnat; } else if (rnat1_kaddr > krbs) { rnat1 = *rnat1_kaddr; } urnat |= ((rnat1 << (63 - shift)) | (rnat0 >> shift)) & kmask; return urnat;}/* * The reverse of get_rnat. */static voidput_rnat (struct pt_regs *pt, struct switch_stack *sw, unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat){ unsigned long rnat0 = 0, rnat1 = 0, rnat = 0, *slot0_kaddr, kmask = ~0UL, mask; unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; long num_regs; kbsp = (unsigned long *) sw->ar_bspstore; ubspstore = (unsigned long *) pt->ar_bspstore; /* * First, figure out which bit number slot 0 in user-land maps * to in the kernel rnat. Do this by figuring out how many * register slots we're beyond the user's backingstore and * then computing the equivalent address in kernel space. */ num_regs = (long) ia64_rse_num_regs(ubspstore, urnat_addr + 1); slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); shift = ia64_rse_slot_num(slot0_kaddr); rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); rnat0_kaddr = rnat1_kaddr - 64; if (ubspstore + 63 > urnat_addr) { /* some bits need to be place in pt->ar_rnat: */ kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1); pt->ar_rnat = (pt->ar_rnat & kmask) | (rnat & ~kmask); } /* * Note: Section 11.1 of the EAS guarantees that bit 63 of an * rnat slot is ignored. so we don't have to clear it here. */ rnat0 = (urnat << shift); mask = ~0UL << shift; if (rnat0_kaddr >= kbsp) { sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat0 & mask); } else if (rnat0_kaddr > krbs) { *rnat0_kaddr = ((*rnat0_kaddr & ~mask) | (rnat0 & mask)); } rnat1 = (urnat >> (63 - shift)); mask = ~0UL >> (63 - shift); if (rnat1_kaddr >= kbsp) { sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat1 & mask); } else if (rnat1_kaddr > krbs) { *rnat1_kaddr = ((*rnat1_kaddr & ~mask) | (rnat1 & mask)); }}/* * Read a word from the user-level backing store of task CHILD. ADDR is the user-level * address to read the word from, VAL a pointer to the return value, and USER_BSP gives * the end of the user-level backing store (i.e., it's the address that would be in ar.bsp * after the user executed a "cover" instruction). * * This routine takes care of accessing the kernel register backing store for those * registers that got spilled there. It also takes care of calculating the appropriate * RNaT collection words. */longia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end, unsigned long addr, long *val){ unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; struct pt_regs *child_regs; size_t copied; long ret; urbs_end = (long *) user_rbs_end; laddr = (unsigned long *) addr; child_regs = ia64_task_regs(child); bspstore = (unsigned long *) child_regs->ar_bspstore; krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) { /* * Attempt to read the RBS in an area that's actually on the kernel RBS => * read the corresponding bits in the kernel RBS. */ rnat_addr = ia64_rse_rnat_addr(laddr); ret = get_rnat(child_regs, child_stack, krbs, rnat_addr); if (laddr == rnat_addr) { /* return NaT collection word itself */ *val = ret; return 0; } if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { /* * It is implementation dependent whether the data portion of a * NaT value gets saved on a st8.spill or RSE spill (e.g., see * EAS 2.6, 4.4.4.6 Register Spill and Fill). To get consistent * behavior across all possible IA-64 implementations, we return * zero in this case. */ *val = 0; return 0; } if (laddr < urbs_end) { /* the desired word is on the kernel RBS and is not a NaT */ regnum = ia64_rse_num_regs(bspstore, laddr); *val = *ia64_rse_skip_regs(krbs, regnum); return 0; } } copied = access_process_vm(child, addr, &ret, sizeof(ret), 0); if (copied != sizeof(ret)) return -EIO; *val = ret; return 0;}longia64_poke (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end, unsigned long addr, long val){ unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end = (long *) user_rbs_end; struct pt_regs *child_regs; laddr = (unsigned long *) addr; child_regs = ia64_task_regs(child); bspstore = (unsigned long *) child_regs->ar_bspstore; krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) { /* * Attempt to write the RBS in an area that's actually on the kernel RBS * => write the corresponding bits in the kernel RBS. */ if (ia64_rse_is_rnat_slot(laddr)) put_rnat(child_regs, child_stack, krbs, laddr, val); else { if (laddr < urbs_end) { regnum = ia64_rse_num_regs(bspstore, laddr); *ia64_rse_skip_regs(krbs, regnum) = val; } } } else if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) { return -EIO; } return 0;}/* * Calculate the address of the end of the user-level register backing store. This is the * address that would have been stored in ar.bsp if the user had executed a "cover" * instruction right before entering the kernel. If CFMP is not NULL, it is used to * return the "current frame mask" that was active at the time the kernel was entered. */unsigned longia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, unsigned long *cfmp){ unsigned long *krbs, *bspstore, cfm; struct unw_frame_info info; long ndirty; krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; bspstore = (unsigned long *) pt->ar_bspstore; ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); cfm = pt->cr_ifs & ~(1UL << 63); if ((long) pt->cr_ifs >= 0) { /* * If bit 63 of cr.ifs is cleared, the kernel was entered via a system * call and we need to recover the CFM that existed on entry to the * kernel by unwinding the kernel stack. */ unw_init_from_blocked_task(&info, child); if (unw_unwind_to_user(&info) == 0) { unw_get_cfm(&info, &cfm); ndirty += (cfm & 0x7f); } } if (cfmp) *cfmp = cfm; return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);}/* * Synchronize (i.e, write) the RSE backing store living in kernel space to the VM of the * CHILD task. SW and PT are the pointers to the switch_stack and pt_regs structures, * respectively. USER_RBS_END is the user-level address at which the backing store ends. */longia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, unsigned long user_rbs_start, unsigned long user_rbs_end){ unsigned long addr, val; long ret; /* now copy word for word from kernel rbs to user rbs: */ for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { ret = ia64_peek(child, sw, user_rbs_end, addr, &val); if (ret < 0) return ret; if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) return -EIO; } return 0;}/* * Simulate user-level "flushrs". Note: we can't just add pt->loadrs>>16 to * pt->ar_bspstore because the kernel backing store and the user-level backing store may * have different alignments (and therefore a different number of intervening rnat slots). */static voiduser_flushrs (struct task_struct *task, struct pt_regs *pt){ unsigned long *krbs; long ndirty; krbs = (unsigned long *) task + IA64_RBS_OFFSET/8; ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); pt->ar_bspstore = (unsigned long) ia64_rse_skip_regs((unsigned long *) pt->ar_bspstore, ndirty); pt->loadrs = 0;}/* * Synchronize the RSE backing store of CHILD and all tasks that share the address space * with it. CHILD_URBS_END is the address of the end of the register backing store of * CHILD. If MAKE_WRITABLE is set, a user-level "flushrs" is simulated such that the VM * can be written via ptrace() and the tasks will pick up the newly written values. It * would be OK to unconditionally simulate a "flushrs", but this would be more intrusive * than strictly necessary (e.g., it would make it impossible to obtain the original value * of ar.bspstore). */static voidthreads_sync_user_rbs (struct task_struct *child, unsigned long child_urbs_end, int make_writable){ struct switch_stack *sw; unsigned long urbs_end; struct task_struct *p; struct mm_struct *mm; struct pt_regs *pt; long multi_threaded; task_lock(child); { mm = child->mm; multi_threaded = mm && (atomic_read(&mm->mm_users) > 1); } task_unlock(child); if (!multi_threaded) { sw = (struct switch_stack *) (child->thread.ksp + 16); pt = ia64_task_regs(child); ia64_sync_user_rbs(child, sw, pt->ar_bspstore, child_urbs_end); if (make_writable) user_flushrs(child, pt); } else { read_lock(&tasklist_lock); { for_each_task(p) { if (p->mm == mm && p->state != TASK_RUNNING) { sw = (struct switch_stack *) (p->thread.ksp + 16); pt = ia64_task_regs(p); urbs_end = ia64_get_user_rbs_end(p, pt, NULL); ia64_sync_user_rbs(p, sw, pt->ar_bspstore, urbs_end); if (make_writable) user_flushrs(p, pt); } } } read_unlock(&tasklist_lock); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -