⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ptrace.c

📁 广州斯道2410普及版II的源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Kernel support for the ptrace() and syscall tracing interfaces. * * Copyright (C) 1999-2001 Hewlett-Packard Co *	David Mosberger-Tang <davidm@hpl.hp.com> * * Derived from the x86 and Alpha versions.  Most of the code in here * could actually be factored into a common set of routines. */#include <linux/config.h>#include <linux/kernel.h>#include <linux/sched.h>#include <linux/mm.h>#include <linux/errno.h>#include <linux/ptrace.h>#include <linux/smp_lock.h>#include <linux/user.h>#include <asm/pgtable.h>#include <asm/processor.h>#include <asm/ptrace_offsets.h>#include <asm/rse.h>#include <asm/system.h>#include <asm/uaccess.h>#include <asm/unwind.h>/* * Bits in the PSR that we allow ptrace() to change: *	be, up, ac, mfl, mfh (the user mask; five bits total) *	db (debug breakpoint fault; one bit) *	id (instruction debug fault disable; one bit) *	dd (data debug fault disable; one bit) *	ri (restart instruction; two bits) *	is (instruction set; one bit) */#define IPSR_WRITE_MASK \	(IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)#define IPSR_READ_MASK	IPSR_WRITE_MASK#define PTRACE_DEBUG	1#if PTRACE_DEBUG# define dprintk(format...)	printk(format)# define inline#else# define dprintk(format...)#endif/* * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT * bitset where bit i is set iff the NaT bit of register i is set. */unsigned longia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat){#	define GET_BITS(first, last, unat)						\	({										\		unsigned long bit = ia64_unat_pos(&pt->r##first);			\		unsigned long mask = ((1UL << (last - first + 1)) - 1) << first;	\		(ia64_rotl(unat, first) >> bit) & mask;					\	})	unsigned long val;	val  = GET_BITS( 1,  3, scratch_unat);	val |= GET_BITS(12, 15, scratch_unat);	val |= GET_BITS( 8, 11, scratch_unat);	val |= GET_BITS(16, 31, scratch_unat);	return val;#	undef GET_BITS}/* * Set the NaT bits for the scratch registers according to NAT and * return the resulting unat (assuming the scratch registers are * stored in PT). */unsigned longia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat){	unsigned long scratch_unat;#	define PUT_BITS(first, last, nat)					\	({									\		unsigned long bit = ia64_unat_pos(&pt->r##first);		\		unsigned long mask = ((1UL << (last - first + 1)) - 1) << bit;	\		(ia64_rotr(nat, first) << bit) & mask;				\	})	scratch_unat  = PUT_BITS( 1,  3, nat);	scratch_unat |= PUT_BITS(12, 15, nat);	scratch_unat |= PUT_BITS( 8, 11, nat);	scratch_unat |= PUT_BITS(16, 31, nat);	return scratch_unat;#	undef PUT_BITS}#define IA64_MLX_TEMPLATE	0x2#define IA64_MOVL_OPCODE	6voidia64_increment_ip (struct pt_regs *regs){	unsigned long w0, ri = ia64_psr(regs)->ri + 1;	if (ri > 2) {		ri = 0;		regs->cr_iip += 16;	} else if (ri == 2) {		get_user(w0, (char *) regs->cr_iip + 0);		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {			/*			 * rfi'ing to slot 2 of an MLX bundle causes			 * an illegal operation fault.  We don't want			 * that to happen...			 */			ri = 0;			regs->cr_iip += 16;		}	}	ia64_psr(regs)->ri = ri;}voidia64_decrement_ip (struct pt_regs *regs){	unsigned long w0, ri = ia64_psr(regs)->ri - 1;	if (ia64_psr(regs)->ri == 0) {		regs->cr_iip -= 16;		ri = 2;		get_user(w0, (char *) regs->cr_iip + 0);		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {			/*			 * rfi'ing to slot 2 of an MLX bundle causes			 * an illegal operation fault.  We don't want			 * that to happen...			 */			ri = 1;		}	}	ia64_psr(regs)->ri = ri;}/* * This routine is used to read an rnat bits that are stored on the kernel backing store. * Since, in general, the alignment of the user and kernel are different, this is not * completely trivial.  In essence, we need to construct the user RNAT based on up to two * kernel RNAT values and/or the RNAT value saved in the child's pt_regs. * * user rbs * * +--------+ <-- lowest address * | slot62 | * +--------+ * |  rnat  | 0x....1f8 * +--------+ * | slot00 | \ * +--------+ | * | slot01 | > child_regs->ar_rnat * +--------+ | * | slot02 | /				kernel rbs * +--------+				+--------+ *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs * +- - - - +				+--------+ *					| slot62 | * +- - - - +				+--------+ *					|  rnat	 | * +- - - - +				+--------+ *   vrnat				| slot00 | * +- - - - +				+--------+ *					=	 = *					+--------+ *					| slot00 | \ *					+--------+ | *					| slot01 | > child_stack->ar_rnat *					+--------+ | *					| slot02 | / *					+--------+ *						  <--- child_stack->ar_bspstore * * The way to think of this code is as follows: bit 0 in the user rnat corresponds to some * bit N (0 <= N <= 62) in one of the kernel rnat value.  The kernel rnat value holding * this bit is stored in variable rnat0.  rnat1 is loaded with the kernel rnat value that * form the upper bits of the user rnat value. * * Boundary cases: * * o when reading the rnat "below" the first rnat slot on the kernel backing store, *   rnat0/rnat1 are set to 0 and the low order bits are merged in from pt->ar_rnat. * * o when reading the rnat "above" the last rnat slot on the kernel backing store, *   rnat0/rnat1 gets its value from sw->ar_rnat. */static unsigned longget_rnat (struct pt_regs *pt, struct switch_stack *sw,	  unsigned long *krbs, unsigned long *urnat_addr){	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr, kmask = ~0UL;	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;	long num_regs;	kbsp = (unsigned long *) sw->ar_bspstore;	ubspstore = (unsigned long *) pt->ar_bspstore;	/*	 * First, figure out which bit number slot 0 in user-land maps	 * to in the kernel rnat.  Do this by figuring out how many	 * register slots we're beyond the user's backingstore and	 * then computing the equivalent address in kernel space.	 */	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);	shift = ia64_rse_slot_num(slot0_kaddr);	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);	rnat0_kaddr = rnat1_kaddr - 64;	if (ubspstore + 63 > urnat_addr) {		/* some bits need to be merged in from pt->ar_rnat */		kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1);		urnat = (pt->ar_rnat & ~kmask);	}	if (rnat0_kaddr >= kbsp) {		rnat0 = sw->ar_rnat;	} else if (rnat0_kaddr > krbs) {		rnat0 = *rnat0_kaddr;	}	if (rnat1_kaddr >= kbsp) {		rnat1 = sw->ar_rnat;	} else if (rnat1_kaddr > krbs) {		rnat1 = *rnat1_kaddr;	}	urnat |= ((rnat1 << (63 - shift)) | (rnat0 >> shift)) & kmask;	return urnat;}/* * The reverse of get_rnat. */static voidput_rnat (struct pt_regs *pt, struct switch_stack *sw,	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat){	unsigned long rnat0 = 0, rnat1 = 0, rnat = 0, *slot0_kaddr, kmask = ~0UL, mask;	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;	long num_regs;	kbsp = (unsigned long *) sw->ar_bspstore;	ubspstore = (unsigned long *) pt->ar_bspstore;	/*	 * First, figure out which bit number slot 0 in user-land maps	 * to in the kernel rnat.  Do this by figuring out how many	 * register slots we're beyond the user's backingstore and	 * then computing the equivalent address in kernel space.	 */	num_regs = (long) ia64_rse_num_regs(ubspstore, urnat_addr + 1);	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);	shift = ia64_rse_slot_num(slot0_kaddr);	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);	rnat0_kaddr = rnat1_kaddr - 64;	if (ubspstore + 63 > urnat_addr) {		/* some bits need to be place in pt->ar_rnat: */		kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1);		pt->ar_rnat = (pt->ar_rnat & kmask) | (rnat & ~kmask);	}	/*	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an	 * rnat slot is ignored. so we don't have to clear it here.	 */	rnat0 = (urnat << shift);	mask = ~0UL << shift;	if (rnat0_kaddr >= kbsp) {		sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat0 & mask);	} else if (rnat0_kaddr > krbs) {		*rnat0_kaddr = ((*rnat0_kaddr & ~mask) | (rnat0 & mask));	}	rnat1 = (urnat >> (63 - shift));	mask = ~0UL >> (63 - shift);	if (rnat1_kaddr >= kbsp) {		sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat1 & mask);	} else if (rnat1_kaddr > krbs) {		*rnat1_kaddr = ((*rnat1_kaddr & ~mask) | (rnat1 & mask));	}}/* * Read a word from the user-level backing store of task CHILD.  ADDR is the user-level * address to read the word from, VAL a pointer to the return value, and USER_BSP gives * the end of the user-level backing store (i.e., it's the address that would be in ar.bsp * after the user executed a "cover" instruction). * * This routine takes care of accessing the kernel register backing store for those * registers that got spilled there.  It also takes care of calculating the appropriate * RNaT collection words. */longia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end,	   unsigned long addr, long *val){	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;	struct pt_regs *child_regs;	size_t copied;	long ret;	urbs_end = (long *) user_rbs_end;	laddr = (unsigned long *) addr;	child_regs = ia64_task_regs(child);	bspstore = (unsigned long *) child_regs->ar_bspstore;	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;	if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) {		/*		 * Attempt to read the RBS in an area that's actually on the kernel RBS =>		 * read the corresponding bits in the kernel RBS.		 */		rnat_addr = ia64_rse_rnat_addr(laddr);		ret = get_rnat(child_regs, child_stack, krbs, rnat_addr);		if (laddr == rnat_addr) {			/* return NaT collection word itself */			*val = ret;			return 0;		}		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {			/*			 * It is implementation dependent whether the data portion of a			 * NaT value gets saved on a st8.spill or RSE spill (e.g., see			 * EAS 2.6, 4.4.4.6 Register Spill and Fill).  To get consistent			 * behavior across all possible IA-64 implementations, we return			 * zero in this case.			 */			*val = 0;			return 0;		}		if (laddr < urbs_end) {			/* the desired word is on the kernel RBS and is not a NaT */			regnum = ia64_rse_num_regs(bspstore, laddr);			*val = *ia64_rse_skip_regs(krbs, regnum);			return 0;		}	}	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);	if (copied != sizeof(ret))		return -EIO;	*val = ret;	return 0;}longia64_poke (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end,	   unsigned long addr, long val){	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end = (long *) user_rbs_end;	struct pt_regs *child_regs;	laddr = (unsigned long *) addr;	child_regs = ia64_task_regs(child);	bspstore = (unsigned long *) child_regs->ar_bspstore;	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;	if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) {		/*		 * Attempt to write the RBS in an area that's actually on the kernel RBS		 * => write the corresponding bits in the kernel RBS.		 */		if (ia64_rse_is_rnat_slot(laddr))			put_rnat(child_regs, child_stack, krbs, laddr, val);		else {			if (laddr < urbs_end) {				regnum = ia64_rse_num_regs(bspstore, laddr);				*ia64_rse_skip_regs(krbs, regnum) = val;			}		}	} else if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) {		return -EIO;	}	return 0;}/* * Calculate the address of the end of the user-level register backing store.  This is the * address that would have been stored in ar.bsp if the user had executed a "cover" * instruction right before entering the kernel.  If CFMP is not NULL, it is used to * return the "current frame mask" that was active at the time the kernel was entered. */unsigned longia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, unsigned long *cfmp){	unsigned long *krbs, *bspstore, cfm;	struct unw_frame_info info;	long ndirty;	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;	bspstore = (unsigned long *) pt->ar_bspstore;	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));	cfm = pt->cr_ifs & ~(1UL << 63);	if ((long) pt->cr_ifs >= 0) {		/*		 * If bit 63 of cr.ifs is cleared, the kernel was entered via a system		 * call and we need to recover the CFM that existed on entry to the		 * kernel by unwinding the kernel stack.		 */		unw_init_from_blocked_task(&info, child);		if (unw_unwind_to_user(&info) == 0) {			unw_get_cfm(&info, &cfm);			ndirty += (cfm & 0x7f);		}	}	if (cfmp)		*cfmp = cfm;	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);}/* * Synchronize (i.e, write) the RSE backing store living in kernel space to the VM of the * CHILD task.  SW and PT are the pointers to the switch_stack and pt_regs structures, * respectively.  USER_RBS_END is the user-level address at which the backing store ends. */longia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,		    unsigned long user_rbs_start, unsigned long user_rbs_end){	unsigned long addr, val;	long ret;	/* now copy word for word from kernel rbs to user rbs: */	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);		if (ret < 0)			return ret;		if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))			return -EIO;	}	return 0;}/* * Simulate user-level "flushrs".  Note: we can't just add pt->loadrs>>16 to * pt->ar_bspstore because the kernel backing store and the user-level backing store may * have different alignments (and therefore a different number of intervening rnat slots). */static voiduser_flushrs (struct task_struct *task, struct pt_regs *pt){	unsigned long *krbs;	long ndirty;	krbs = (unsigned long *) task + IA64_RBS_OFFSET/8;	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));	pt->ar_bspstore = (unsigned long) ia64_rse_skip_regs((unsigned long *) pt->ar_bspstore,							     ndirty);	pt->loadrs = 0;}/* * Synchronize the RSE backing store of CHILD and all tasks that share the address space * with it.  CHILD_URBS_END is the address of the end of the register backing store of * CHILD.  If MAKE_WRITABLE is set, a user-level "flushrs" is simulated such that the VM * can be written via ptrace() and the tasks will pick up the newly written values.  It * would be OK to unconditionally simulate a "flushrs", but this would be more intrusive * than strictly necessary (e.g., it would make it impossible to obtain the original value * of ar.bspstore). */static voidthreads_sync_user_rbs (struct task_struct *child, unsigned long child_urbs_end, int make_writable){	struct switch_stack *sw;	unsigned long urbs_end;	struct task_struct *p;	struct mm_struct *mm;	struct pt_regs *pt;	long multi_threaded;	task_lock(child);	{		mm = child->mm;		multi_threaded = mm && (atomic_read(&mm->mm_users) > 1);	}	task_unlock(child);	if (!multi_threaded) {		sw = (struct switch_stack *) (child->thread.ksp + 16);		pt = ia64_task_regs(child);		ia64_sync_user_rbs(child, sw, pt->ar_bspstore, child_urbs_end);		if (make_writable)			user_flushrs(child, pt);	} else {		read_lock(&tasklist_lock);		{			for_each_task(p) {				if (p->mm == mm && p->state != TASK_RUNNING) {					sw = (struct switch_stack *) (p->thread.ksp + 16);					pt = ia64_task_regs(p);					urbs_end = ia64_get_user_rbs_end(p, pt, NULL);					ia64_sync_user_rbs(p, sw, pt->ar_bspstore, urbs_end);					if (make_writable)						user_flushrs(p, pt);				}			}		}		read_unlock(&tasklist_lock);	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -