📄 blas.texi
字号:
@deftypefunx int gsl_blas_dcopy (const gsl_vector * @var{x}, gsl_vector * @var{y})
@deftypefunx int gsl_blas_ccopy (const gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y})
@deftypefunx int gsl_blas_zcopy (const gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y})
@cindex COPY, Level-1 BLAS
These functions copy the elements of the vector @var{x} into the vector
@var{y}.
@end deftypefun
@deftypefun int gsl_blas_saxpy (float @var{alpha}, const gsl_vector_float * @var{x}, gsl_vector_float * @var{y})
@deftypefunx int gsl_blas_daxpy (double @var{alpha}, const gsl_vector * @var{x}, gsl_vector * @var{y})
@deftypefunx int gsl_blas_caxpy (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y})
@deftypefunx int gsl_blas_zaxpy (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y})
@cindex AXPY, Level-1 BLAS
These functions compute the sum @math{y = \alpha x + y} for the vectors
@var{x} and @var{y}.
@end deftypefun
@deftypefun void gsl_blas_sscal (float @var{alpha}, gsl_vector_float * @var{x})
@deftypefunx void gsl_blas_dscal (double @var{alpha}, gsl_vector * @var{x})
@deftypefunx void gsl_blas_cscal (const gsl_complex_float @var{alpha}, gsl_vector_complex_float * @var{x})
@deftypefunx void gsl_blas_zscal (const gsl_complex @var{alpha}, gsl_vector_complex * @var{x})
@deftypefunx void gsl_blas_csscal (float @var{alpha}, gsl_vector_complex_float * @var{x})
@deftypefunx void gsl_blas_zdscal (double @var{alpha}, gsl_vector_complex * @var{x})
@cindex SCAL, Level-1 BLAS
These functions rescale the vector @var{x} by the multiplicative factor
@var{alpha}.
@end deftypefun
@deftypefun int gsl_blas_srotg (float @var{a}[], float @var{b}[], float @var{c}[], float @var{s}[])
@deftypefunx int gsl_blas_drotg (double @var{a}[], double @var{b}[], double @var{c}[], double @var{s}[])
@cindex ROTG, Level-1 BLAS
@cindex Givens Rotation, BLAS
These functions compute a Givens rotation @math{(c,s)} which zeroes the
vector @math{(a,b)},
@tex
\beforedisplay
$$
\left(
\matrix{c&s\cr
-s&c\cr}
\right)
\left(
\matrix{a\cr
b\cr}
\right)
=
\left(
\matrix{r'\cr
0\cr}
\right)
$$
\afterdisplay
@end tex
@ifinfo
@example
[ c s ] [ a ] = [ r ]
[ -s c ] [ b ] [ 0 ]
@end example
@end ifinfo
@noindent
The variables @var{a} and @var{b} are overwritten by the routine.
@end deftypefun
@deftypefun int gsl_blas_srot (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}, float @var{c}, float @var{s})
@deftypefunx int gsl_blas_drot (gsl_vector * @var{x}, gsl_vector * @var{y}, const double @var{c}, const double @var{s})
These functions apply a Givens rotation @math{(x', y') = (c x + s y, -s
x + c y)} to the vectors @var{x}, @var{y}.
@end deftypefun
@deftypefun int gsl_blas_srotmg (float @var{d1}[], float @var{d2}[], float @var{b1}[], float @var{b2}, float @var{P}[])
@deftypefunx int gsl_blas_drotmg (double @var{d1}[], double @var{d2}[], double @var{b1}[], double @var{b2}, double @var{P}[])
@cindex Modified Givens Rotation, BLAS
@cindex Givens Rotation, Modified, BLAS
These functions compute a modified Given's transformation. The modified
Given's transformation is defined in the original Level-1 @sc{blas}
specification, given in the references.
@end deftypefun
@deftypefun int gsl_blas_srotm (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}, const float @var{P}[])
@deftypefunx int gsl_blas_drotm (gsl_vector * @var{x}, gsl_vector * @var{y}, const double @var{P}[])
These functions apply a modified Given's transformation.
@end deftypefun
@node Level 2 GSL BLAS Interface
@subsection Level 2
@deftypefun int gsl_blas_sgemv (CBLAS_TRANSPOSE_t @var{TransA}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_vector_float * @var{x}, float @var{beta}, gsl_vector_float * @var{y})
@deftypefunx int gsl_blas_dgemv (CBLAS_TRANSPOSE_t @var{TransA}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_vector * @var{x}, double @var{beta}, gsl_vector * @var{y})
@deftypefunx int gsl_blas_cgemv (CBLAS_TRANSPOSE_t @var{TransA}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_vector_complex_float * @var{x}, const gsl_complex_float @var{beta}, gsl_vector_complex_float * @var{y})
@deftypefunx int gsl_blas_zgemv (CBLAS_TRANSPOSE_t @var{TransA}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{x}, const gsl_complex @var{beta}, gsl_vector_complex * @var{y})
@cindex GEMV, Level-2 BLAS
These functions compute the matrix-vector product and sum @math{y =
\alpha op(A) x + \beta y}, where @math{op(A) = A},
@math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans},
@code{CblasTrans}, @code{CblasConjTrans}.
@end deftypefun
@deftypefun int gsl_blas_strmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_float * @var{A}, gsl_vector_float * @var{x})
@deftypefunx int gsl_blas_dtrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix * @var{A}, gsl_vector * @var{x})
@deftypefunx int gsl_blas_ctrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex_float * @var{A}, gsl_vector_complex_float * @var{x})
@deftypefunx int gsl_blas_ztrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{x})
@cindex TRMV, Level-2 BLAS
These functions compute the matrix-vector product
@math{x =\alpha op(A) x} for the triangular matrix @var{A}, where
@math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} =
@code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When
@var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the
diagonal of the matrix is used, but if @var{Diag} is @code{CblasUnit}
then the diagonal elements of the matrix @var{A} are taken as unity and
are not referenced.
@end deftypefun
@deftypefun int gsl_blas_strsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_float * @var{A}, gsl_vector_float * @var{x})
@deftypefunx int gsl_blas_dtrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix * @var{A}, gsl_vector * @var{x})
@deftypefunx int gsl_blas_ctrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex_float * @var{A}, gsl_vector_complex_float * @var{x})
@deftypefunx int gsl_blas_ztrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex * @var{A}, gsl_vector_complex *@var{x})
@cindex TRSV, Level-2 BLAS
These functions compute @math{inv(op(A)) x} for @var{x}, where
@math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} =
@code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When
@var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the
diagonal of the matrix is used, but if @var{Diag} is @code{CblasUnit}
then the diagonal elements of the matrix @var{A} are taken as unity and
are not referenced.
@end deftypefun
@deftypefun int gsl_blas_ssymv (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_vector_float * @var{x}, float @var{beta}, gsl_vector_float * @var{y})
@deftypefunx int gsl_blas_dsymv (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_vector * @var{x}, double @var{beta}, gsl_vector * @var{y})
@cindex SYMV, Level-2 BLAS
These functions compute the matrix-vector product and sum @math{y =
\alpha A x + \beta y} for the symmetric matrix @var{A}. Since the
matrix @var{A} is symmetric only its upper half or lower half need to be
stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle
and diagonal of @var{A} are used, and when @var{Uplo} is
@code{CblasLower} then the lower triangle and diagonal of @var{A} are
used.
@end deftypefun
@deftypefun int gsl_blas_chemv (CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_vector_complex_float * @var{x}, const gsl_complex_float @var{beta}, gsl_vector_complex_float * @var{y})
@deftypefunx int gsl_blas_zhemv (CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{x}, const gsl_complex @var{beta}, gsl_vector_complex * @var{y})
@cindex HEMV, Level-2 BLAS
These functions compute the matrix-vector product and sum @math{y =
\alpha A x + \beta y} for the hermitian matrix @var{A}. Since the
matrix @var{A} is hermitian only its upper half or lower half need to be
stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle
and diagonal of @var{A} are used, and when @var{Uplo} is
@code{CblasLower} then the lower triangle and diagonal of @var{A} are
used. The imaginary elements of the diagonal are automatically assumed
to be zero and are not referenced.
@end deftypefun
@deftypefun int gsl_blas_sger (float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, gsl_matrix_float * @var{A})
@deftypefunx int gsl_blas_dger (double @var{alpha}, const gsl_vector * @var{x}, const gsl_vector * @var{y}, gsl_matrix * @var{A})
@deftypefunx int gsl_blas_cgeru (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A})
@deftypefunx int gsl_blas_zgeru (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A})
@cindex GER, Level-2 BLAS
@cindex GERU, Level-2 BLAS
These functions compute the rank-1 update @math{A = \alpha x y^T + A} of
the matrix @var{A}.
@end deftypefun
@deftypefun int gsl_blas_cgerc (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A})
@deftypefunx int gsl_blas_zgerc (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A})
@cindex GERC, Level-2 BLAS
These functions compute the conjugate rank-1 update @math{A = \alpha x
y^H + A} of the matrix @var{A}.
@end deftypefun
@deftypefun int gsl_blas_ssyr (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_float * @var{x}, gsl_matrix_float * @var{A})
@deftypefunx int gsl_blas_dsyr (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector * @var{x}, gsl_matrix * @var{A})
@cindex SYR, Level-2 BLAS
These functions compute the symmetric rank-1 update @math{A = \alpha x
x^T + A} of the symmetric matrix @var{A}. Since the matrix @var{A} is
symmetric only its upper half or lower half need to be stored. When
@var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of
@var{A} are used, and when @var{Uplo} is @code{CblasLower} then the
lower triangle and diagonal of @var{A} are used.
@end deftypefun
@deftypefun int gsl_blas_cher (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_complex_float * @var{x}, gsl_matrix_complex_float * @var{A})
@deftypefunx int gsl_blas_zher (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector_complex * @var{x}, gsl_matrix_complex * @var{A})
@cindex HER, Level-2 BLAS
These functions compute the hermitian rank-1 update @math{A = \alpha x
x^H + A} of the hermitian matrix @var{A}. Since the matrix @var{A} is
hermitian only its upper half or lower half need to be stored. When
@var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of
@var{A} are used, and when @var{Uplo} is @code{CblasLower} then the
lower triangle and diagonal of @var{A} are used. The imaginary elements
of the diagonal are automatically set to zero.
@end deftypefun
@deftypefun int gsl_blas_ssyr2 (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, gsl_matrix_float * @var{A})
@deftypefunx int gsl_blas_dsyr2 (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector * @var{x}, const gsl_vector * @var{y}, gsl_matrix * @var{A})
@cindex SYR2, Level-2 BLAS
These functions compute the symmetric rank-2 update @math{A = \alpha x
y^T + \alpha y x^T + A} of the symmetric matrix @var{A}. Since the
matrix @var{A} is symmetric only its upper half or lower half need to be
stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle
and diagonal of @var{A} are used, and when @var{Uplo} is
@code{CblasLower} then the lower triangle and diagonal of @var{A} are
used.
@end deftypefun
@deftypefun int gsl_blas_cher2 (CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A})
@deftypefunx int gsl_blas_zher2 (CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A})
@cindex HER2, Level-2 BLAS
These functions compute the hermitian rank-2 update @math{A = \alpha x
y^H + \alpha^* y x^H A} of the hermitian matrix @var{A}. Since the
matrix @var{A} is hermitian only its upper half or lower half need to be
stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle
and diagonal of @var{A} are used, and when @var{Uplo} is
@code{CblasLower} then the lower triangle and diagonal of @var{A} are
used. The imaginary elements of the diagonal are automatically set to zero.
@end deftypefun
@node Level 3 GSL BLAS Interface
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -