📄 alg10-11.cpp
字号:
// alg10-11.cpp 链式基数排序
typedef int InfoType; // 定义其它数据项的类型
typedef int KeyType; // 定义RedType类型的关键字为整型
struct RedType // 记录类型(同c10-1.h)
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项
};
typedef char KeysType; // 定义关键字类型为字符型
#include"c1.h"
#include"c10-3.h"
void InitList(SLList &L,RedType D[],int n)
{ // 初始化静态链表L(把数组D中的数据存于L中)
char c[MAX_NUM_OF_KEY],c1[MAX_NUM_OF_KEY];
int i,j,max=D[0].key; // max为关键字的最大值
for(i=1;i<n;i++)
if(max<D[i].key)
max=D[i].key;
L.keynum=int(ceil(log10(max)));
L.recnum=n;
for(i=1;i<=n;i++)
{
L.r[i].otheritems=D[i-1].otherinfo;
itoa(D[i-1].key,c,10); // 将10进制整型转化为字符型,存入c
for(j=strlen(c);j<L.keynum;j++) // 若c的长度<max的位数,在c前补'0'
{
strcpy(c1,"0");
strcat(c1,c);
strcpy(c,c1);
}
for(j=0;j<L.keynum;j++)
L.r[i].keys[j]=c[L.keynum-1-j];
}
}
int ord(char c)
{ // 返回k的映射(个位整数)
return c-'0';
}
void Distribute(SLCell r[],int i,ArrType f,ArrType e) // 算法10.15
{ // 静态键表L的r域中记录已按(keys[0],…,keys[i-1])有序。本算法按
// 第i个关键字keys[i]建立RADIX个子表,使同一子表中记录的keys[i]相同。
// f[0..RADIX-1]和e[0..RADIX-1]分别指向各子表中第一个和最后一个记录
int j,p;
for(j=0;j<RADIX;++j)
f[j]=0; // 各子表初始化为空表
for(p=r[0].next;p;p=r[p].next)
{
j=ord(r[p].keys[i]); // ord将记录中第i个关键字映射到[0..RADIX-1]
if(!f[j])
f[j]=p;
else
r[e[j]].next=p;
e[j]=p; // 将p所指的结点插入第j个子表中
}
}
int succ(int i)
{ // 求后继函数
return ++i;
}
void Collect(SLCell r[],ArrType f,ArrType e)
{ // 本算法按keys[i]自小至大地将f[0..RADIX-1]所指各子表依次链接成
// 一个链表,e[0..RADIX-1]为各子表的尾指针。算法10.16
int j,t;
for(j=0;!f[j];j=succ(j)); // 找第一个非空子表,succ为求后继函数
r[0].next=f[j];
t=e[j]; // r[0].next指向第一个非空子表中第一个结点
while(j<RADIX-1)
{
for(j=succ(j);j<RADIX-1&&!f[j];j=succ(j)); // 找下一个非空子表
if(f[j])
{ // 链接两个非空子表
r[t].next=f[j];
t=e[j];
}
}
r[t].next=0; // t指向最后一个非空子表中的最后一个结点
}
void printl(SLList L)
{ // 按链表输出静态链表
int i=L.r[0].next,j;
while(i)
{
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" ");
i=L.r[i].next;
}
}
void RadixSort(SLList &L)
{ // L是采用静态链表表示的顺序表。对L作基数排序,使得L成为按关键字
// 自小到大的有序静态链表,L.r[0]为头结点。算法10.17
int i;
ArrType f,e;
for(i=0;i<L.recnum;++i)
L.r[i].next=i+1;
L.r[L.recnum].next=0; // 将L改造为静态链表
for(i=0;i<L.keynum;++i)
{ // 按最低位优先依次对各关键字进行分配和收集
Distribute(L.r,i,f,e); // 第i趟分配
Collect(L.r,f,e); // 第i趟收集
printf("第%d趟收集后:\n",i+1);
printl(L);
printf("\n");
}
}
void print(SLList L)
{ // 按数组序号输出静态链表
int i,j;
printf("keynum=%d recnum=%d\n",L.keynum,L.recnum);
for(i=1;i<=L.recnum;i++)
{
printf("keys=");
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" otheritems=%d next=%d\n",L.r[i].otheritems,L.r[i].next);
}
}
void Sort(SLList L,int adr[]) // 改此句(类型)
{ // 求得adr[1..L.length],adr[i]为静态链表L的第i个最小记录的序号
int i=1,p=L.r[0].next;
while(p)
{
adr[i++]=p;
p=L.r[p].next;
}
}
void Rearrange(SLList &L,int adr[]) // 改此句(类型)
{ // adr给出静态链表L的有序次序,即L.r[adr[i]]是第i小的记录。
// 本算法按adr重排L.r,使其有序。算法10.18(L的类型有变)
int i,j,k;
for(i=1;i<L.recnum;++i) // 改此句(类型)
if(adr[i]!=i)
{
j=i;
L.r[0]=L.r[i]; // 暂存记录L.r[i]
while(adr[j]!=i)
{ // 调整L.r[adr[j]]的记录到位直到adr[j]=i为止
k=adr[j];
L.r[j]=L.r[k];
adr[j]=j;
j=k; // 记录按序到位
}
L.r[j]=L.r[0];
adr[j]=j;
}
}
#define N 10
void main()
{
RedType d[N]={{278,1},{109,2},{63,3},{930,4},{589,5},{184,6},{505,7},{269,8},{8,9},{83,10}};
SLList l;
int *adr;
InitList(l,d,N);
printf("排序前(next域还没赋值):\n");
print(l);
RadixSort(l);
printf("排序后(静态链表):\n");
print(l);
adr=(int*)malloc((l.recnum)*sizeof(int));
Sort(l,adr);
Rearrange(l,adr);
printf("排序后(重排记录):\n");
print(l);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -