⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 index.html

📁 信号处理系列导航
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><HTML><HEAD><TITLE>A Numerical Tour of Signal Processing</TITLE><META http-equiv=Content-Type content="text/html"><LINK REL="stylesheet" HREF="style.css" TYPE="text/css"></HEAD><BODY bgColor=#FFFFFF><h1 align="center"><font size="+3"><b>A Numerical Tour </b></font></h1><h1 align="center"><font size="+3"><b>of Signal Processing </b></font></h1>								<blockquote>   <blockquote>     <blockquote>       <blockquote>         <blockquote>           <blockquote>             <blockquote>               <blockquote>                 <p align="center"><em><strong>by <a href="http://www.ceremade.dauphine.fr/%7Epeyre/">Gabriel                   Peyr&eacute;</a></strong></em></p>                <p align="center">This web page gathers numerical experiments                   that illustrate the book of Stephane Mallat<br/>                  <em>A Wavelet Tour of Signal Processing - Third Edition: The                   Sparse Way.</em> </p>              </blockquote>            </blockquote>          </blockquote>        </blockquote>      </blockquote>    </blockquote>  </blockquote></blockquote><table width="0%" border="0" align="center">  <tr>    <td><div align="right"><img src="images/cover.jpg" align="right"></div></td>    <td><p><em>A Wavelet Tour of Signal Processing.<br>        Third Edition: The Sparse Way.</em><br>        St&eacute;phane Mallat.<br>        Academic Press, dec. 2008.</p>      <p align="center">[<a href="http://www.amazon.com/Wavelet-Tour-Signal-Processing-Third/dp/0123743702">Order         now</a>]</p>      </td>  </tr></table><p>&nbsp;</p><div align="center">- Introduction - </div><table width="80%" border="0" align="center" cellspacing="5">  <tr>     <td width="30%"><div align="right">Intro #1</div></td>	<td>-</td>    <td width="70%"><a href="basics/">Basics of Matlab/Scilab Programming</a></td>  </tr></table><br/><div align="center">- Image Processing - </div><table width="80%" border="0" align="center" cellspacing="5">  <tr>     <td width="30%"><div align="right">Images #1</div></td>	<td>-</td>    <td width="70%"><a href="image_introduction/">Introduction to Image Processing</a></td>  </tr>  <tr>     <td><div align="right">Images #2</div></td>	<td>-</td>    <td><a href="image_heat/">Edge Detection and Heat Diffusion</a></td>  </tr></table><br/><div align="center">- Audio Processing - </div><table width="80%" border="0" align="center" cellspacing="5">   <tr>     <td width="30%"><div align="right">Audio #1</div></td>	<td>-</td>    <td><a href="audio_processing/">Audio Processing with the Short Time Fourier Transform</a></td>  </tr>  <tr>     <td><div align="right">Audio #2</div></td>	<td>-</td>    <td><a href="audio_separation/">Audio Separation with Sparsity</a></td>  </tr></table><br/><div align="center">- Wavelet Processing - </div><table width="80%" border="0" align="center" cellspacing="5">   <tr>     <td width="30%"><div align="right">Wavelets #1</div></td>	<td>-</td>    <td width="70%"><a href="wavelet_introduction/">Introduction to Wavelet Processing</a></td>  </tr>  <tr>     <td><div align="right">Wavelets #2</div></td>	<td>-</td>    <td><a href="wavelet_approximation/">Image Approximation with Wavelets</a></td>  </tr></table><br/><div align="center">- Denoising - </div><table width="80%" border="0" align="center" cellspacing="5">  <tr>     <td width="30%"><div align="right">Denoising #1</div></td>	<td>-</td>    <td width="70%"><a href="denoising_linear/">Image Denoising with Linear Methods</a></td>  </tr>  <tr>     <td><div align="right">Denoising #2</div></td>	<td>-</td>    <td><a href="denoising_wavelet/">Image Denoising with Wavelets</a></td>  </tr></table><br/><div align="center">- Coding and Compression - </div><table width="80%" border="0" align="center" cellspacing="5">    <tr>     <td width="30%"><div align="right">Coding #1</div></td>	<td>-</td>    <td width="70%"><a href="coding_entropic/">Entropic Coding</a></td>  </tr>    <tr>     <td><div align="right">Coding #2</div></td>	<td>-</td>    <td><a href="coding_natural_images/">Statistics of Natural Images</a></td>  </tr>    <tr>     <td><div align="right">Coding #3</div></td>	<td>-</td>    <td><a href="coding_wavelet_compression/">Wavelet Image Compression</a></td>  </tr></table><br/><div align="center">- Total Variation - </div><table width="80%" border="0" align="center" cellspacing="5">   <tr>     <td width="30%"><div align="right">TV #1</div></td>	<td>-</td>    <td width="70%"><a href="tv_median/">Outliers and Median Denoiser</a></td>  </tr>  <tr>     <td><div align="right">TV #2</div></td>	<td>-</td>    <td><a href="tv_minimization/">Total Variation Minimization</a></td>  </tr></table><br/><div align="center">- Sparsity and Redundant Representations- </div><table width="80%" border="0" align="center" cellspacing="5">  <tr>     <td width="30%"><div align="right">Sparsity #1</div></td>	<td>-</td>    <td width="70%"><a href="sparsity_seismic_mp/">Sparse Spikes Deconvolution with Matching Pursuit</a></td>  </tr>  <tr>     <td><div align="right">Sparsity #2</div></td>	<td>-</td>    <td><a href="sparsity_seismic_bp/">Sparse Spikes Deconvolution with Basis Pursuit</a></td>  </tr>  <tr>     <td><div align="right">Sparsity #3</div></td>	<td>-</td>    <td><a href="sparsity_gabor/">Audio Pursuits in a Gabor Dictionary</a></td>  </tr></table><br/><div align="center">- Inverse Problem and Compressive Sensing - </div><table width="80%" border="0" align="center" cellspacing="5">  <tr>     <td width="30%"><div align="right">Inverse Problems #1</div></td>	<td>-</td>    <td width="70%"><a href="inverse_inpainting/">Variational Image Inpainting</a></td>  </tr>  <tr>     <td><div align="right">Inverse Problems #2</div></td>	<td>-</td>    <td><a href="inverse_tomography/">Reconstruction from Partial Tomography Measurements</a></td>  </tr>  <tr>     <td><div align="right">Inverse Problems #3</div></td>	<td>-</td>    <td><a href="inverse_compressed_sensing">Compressed Sensing</a></td>  </tr>   <tr>     <td><div align="right">Inverse Problems #4</div></td>	<td>-</td>    <td><a href="inverse_cs_fourier/">Reconstruction from Compressive Fourier Measurements</a></td>  </tr></table><br/><blockquote>   <blockquote>     <blockquote>       <blockquote>        <p align="justify"><em><strong>How to use these numerical tours</strong></em>:           Each tour is a set of experiments that can be performed using either           <a href="http://www.mathworks.com">Matlab</a> or <a href="http://www.scilab.org/">Scilab</a>.           At the beginning of each tour, you are asked to download and install           the required toolboxes (there exists three toolboxes: general/signal/graph),           that contain many useful helper functions. Each tour alternates between           code you can copy/paste in Matlab or Scilab, and exercises you need           to solve on your own.</p>	        <p align="justify"><em><strong>Solutions of the numerical exercises:</strong></em>: 				If you are a teacher and would like to have access to the Matlab files that contain the solution of the numerical exercises, 				please send me an <a href="mailto:gabriel.peyre.nospam at ceremade.dauphine.fr">e-mail</a>.			</p>      </blockquote>    </blockquote>  </blockquote></blockquote><p>&nbsp;</p><p>&nbsp;</p><p align="right">Copyright &copy; 2008 <a href="http://www.ceremade.dauphine.fr/%7Epeyre/">Gabriel   Peyr&eacute;</a></p></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -