📄 214.txt
字号:
发信人: nope (明朗朗的生活), 信区: DataMining
标 题: Re: svm and bayes rule in Classification
发信站: 南京大学小百合站 (Thu Jul 4 15:05:01 2002), 站内信件
可有全文?
【 在 GzLi (笑梨) 的大作中提到: 】
: 篇名: Support Vector Machines and the Bayes Rule in Classification
: 刊名: Data Mining and Knowledge Discovery
: ISSN: 1384-5810
: 卷期: 6 卷 3 期 出版日期: 200207
: 页码: 从 259 页到 275 页共 17 页
: 作者: Lin Yi Department of Statistics, University of Wisconsin, Madison
: , 1210 West Dayton Street, Madison, WI 53706-1685, USA. yilin@stat.wisc.edu
: 文摘:
: The Bayes rule is the optimal classification rule if the underlying distrib..
: of the data is known. In practice we do not know the underlying distribution
: , and need to “learn” classification rules from the data. One way to derive
: classification rules in practice is to implement the Bayes rule approximately
: by estimating an appropriate classification function. Traditional statistical
: methods use estimated log odds ratio as the classification function. Support
: vector machines (SVMs) are one type of large margin classifier, and the
: relationship between SVMs and the Bayes rule was not clear. In this paper
: , it is shown that the asymptotic target of SVMs are some interesting classif
: ication
: functions that are directly related to the Bayes rule. The rate of converg..
: of the solutions of SVMs to their corresponding target functions is explic..
: (以下引言省略 ... ...)
--
http://bbs.nju.edu.cn/cgi-bin/bbs/showfile?name=photo.gif
※ 来源:.南京大学小百合站 bbs.nju.edu.cn.[FROM: 202.119.94.20]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -