📄 1.txt
字号:
发信人: NAOMIELIE (雁来红), 信区: DataMining
标 题: Readings in Data Mining-Tentative Selection of In
发信站: 南京大学小百合站 (Wed Feb 19 10:13:22 2003)
发信人: google (堂.吉可德——不及格大学士), 信区: Database
标 题: Readings in Data Mining by老韩等
发信站: 日月光华 (2003年02月18日22:33:37 星期二), 站内信件
Readings in Data Mining-Tentative Selection of Influential Paper
-------------------------------------------------------------------------
Introduction
Iintroduction by co-editors.
-------------------------------------------------------------------------
Data Warehouse and OLAP Technology for Data Mining
J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F.
Pellow, and H. Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge
Discovery, 1(1):29-54, 1997.
(??) V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data
cubes efficiently. In SIGMOD'96, pp. 205-216, Montreal, Canada, June 1996.
S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R.
Ramakrishnan, and S. Sarawagi. On the computation of multidimensional
aggregates. In Proc. 1996 Int. Conf. Very Large Data Bases (VLDB'96), pp.
506-521, Bombay, India, Sept. 1996.
Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for
simultaneous multidimensional aggregates. In SIGMOD'97, pp. 159-170,
Tucson, Arizona, May 1997.
K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. In SIGMOD'99, pp. 359--370, Philadelphia, PA, June 1999.
J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg
cubes with complex measures. In SIGMOD'01, pp. 1--12, Santa Barbara, CA,
May 2001.
W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed Cube: An Effective
Approach to Reducing Data Cube Size. In Proc. 2002 Int. Conf. Data
Engineering (ICDE'02) , San Fransisco, CA, April 2002.
---------------------------------------------------------------------------
Data Preprocessing
V. Raman and J. M. Hellerstein. Potter's Wheel: An Interactive Data
Cleaning System Proc. 2001 Int. Conf. on Very Large Data Bases (VLDB'01),
Rome, Italy, pp. 381-390, Sept. 2001.
-----------------------------------------------------------------------
Data Cube Exploration and Concept Description
J. Han, Y. Cai and N. Cercone, Knowledge Discovery in Databases: An
Attribute-Oriented Approach in (VLDB'92) , Vancouver, Canada, August 1992,
pp. 547-559.
[??] K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation
at multiple granularities. In EDBT'98, pp. 263-277, Valencia, Spain, March
1998.
S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of
OLAP data cubes. In Proc. Int. Conf. of Extending Database Technology
(EDBT'98), Valencia, Spain, pp. 168-182, March 1998
-------------------------------------------------------------------
Mining Association Rules in Large Databases
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
VLDB'94, pp. 487-499, Santiago, Chile, Sept. 1994.
H. Mannila and H Toivonen. Level-wise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1, 1997.
R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In SIGMOD'98, pp.
13-24 Seattle, Washington, June 1998.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In Proc. 7th Int. Conf. Database
Theory (ICDT'99), pages 398-416, Jerusalem, Israel, Jan. 1999.
R. J. Bayardo and R. Agrawal. Mining the most interesting rules. In Proc.
1999 Int. Conf. Knowledge Discovery and Data Mining (KDD'99), pp. 145-154,
San Diego, CA, Aug. 1999.
R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm
for generation of frequent itemsets. In Journal of Parallel and Distributed
Computing, 2000.
J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate
Generation., Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data
(SIGMOD'00), Dallas, TX, May 2000.
M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm for closed
itemset mining. In Proc. 2002 SIAM Int. Conf. Data Mining, Arlington, VA,
April 2002.
----------------------------------------------------------------
Classification and Prediction
J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106,
1986.
any representative papers on CART?
J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier
for data mining. In VLDB'96, pp. 544-555, Bombay, India, Sept. 1996.
J. Gehrke, R. Ramakrishnan, V. Ganti. RainForest: A framework for fast
decision tree construction of large datasets. In VLDB'98, pp. 416-427, New
York, NY, August 1998.
B. Liu, W. Hsu, and Y. Ma. Integrating Classification and Association Rule
Mining. Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD'98)
New York, NY, Aug. 1998.
M. Ankerst, M. Ester, and H.-P. Kriegel. Towards an effective cooperation
of the user and the computer for classification. In Proc. 2000 Int. Conf.
Knowledge Discovery and Data Mining (KDD'00), pages 179-188, Boston, MA,
Aug. 2000.
--------------------------------------------------------------------------
Cluster Analysis
R. Ng and J. Han. Efficient and effective clustering method for spatial
data mining. In VLDB'94, pp. 144-155, Santiago, Chile, Sept. 1994.
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data
clustering method for very large databases. In SIGMOD'96, pp. 103-114,
Montreal, Canada, June 1996.
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases. In KDD'96, pp.
226-231, Portland, Oregon, August 1996.
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In
SIGMOD'98, pp. 94-105, Seattle, Washington, June 1998.
M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering
points to identify the clustering structure. In SIGMOD'99, pp. 49-60,
Philadelphia, PA, June 1999.
E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large
datasets. In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB'98), pages
392-403, New York, NY, Aug. 1998.
M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying
Density-Based Local Outliers. In Proc. ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD 2000), Dallas, TX, 2000, pp. 93-104.
G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering
Algorithm Using Dynamic Modeling. COMPUTER, 32(8): 68-75, 1999.
Wei Wang, Jiong Yang, Richard Muntz. STING+: an approach to active spatial
data mining (ICDE 99, pp. 116-125)
S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering Data
Streams, Proc. IEEE Symposium on Foundations of Computer Science (FOCS'00),
Redondo Beach, CA, pp. 359-366, 2000
C. Aggarwal, and P.S. Yu, Re-defining Clustering for High Dimensional
Applications, IEEE Trans. Knowledge and Data Eng., Vol. 14, No.2, March
2002, pp. 210-225.
H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity
in large data sets, Proc. the ACM SIGMOD International Conference on
Management of Data (SIGMOD), Madison, Wisconsin, 2002.
-------------------------------------------------------------------------
Mining Trends and Sequential Patterns in Time-Series or Sequence databases
R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in
sequence databases. In Proc. 4th Int. Conf. Foundations of Data
Organization and Algorithms, pp. 69-84, Chicago, IL, Oct. 1993.
R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait. Querying shapes of
histories. In VLDB'95, pp. 502-514, Zürich, Switzerland, Sept. 1995.
R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. In Proc. 5th Int. Conf. Extending Database
Technology (EDBT'96), pages 3-17, Avignon, France, Mar. 1996.
Mannila H.; Toivonen H.; Inkeri Verkamo A., Discovery of Frequent Episodes
in Event Sequences. Data Mining and Knowledge Discovery, 1997, vol. 1, no.
3, pp. 259-289(31)
M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining
with regular expression constraints. In Proc. 1999 Int. Conf. Very Large
Data Bases (VLDB'99), pp. 223-234, Edinburgh, UK, Sept. 1999.
J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth.
, Proc. 2001 Int. Conf. on Data Engineering (ICDE'01), Heidelberg, Germany,
April 2001.
J. Yang, P. Yu, W. Wang, and J. Han, '' Mining Long Sequential Patterns in
a Noisy Environment '', Proc. 2002 ACM-SIGMOD Int. Conf. on Management of
Data (SIGMOD'02)}, Madison, WI, June 2002.
--------------------------------------------------------------------
Web Mining
S. Chakrabarti, B. E. Dom, D. Gibson, J. M. Kleinberg, P. Raghavan, and S.
Rajagopalan. Automatic resource compilation by analyzing hyperlink
structure and associated text. In Proc. 7th Int. World Wide Web Conf.
(WWW'98), pp. 65-74, Brisbane, Australia, 1998.
J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.
Journal of ACM, 46(5):604-632, 1999.
-----------------------------------------------------------------------
Data Mining Applications and Social Impacts of Data Mining
H. V. Jagadish, J. Madar, and R. Ng. Semantic compression and pattern
extraction with fascicles. In Proc. 1999 Int. Conf. Very Large Data Bases
(VLDB'99), pages 186-197, Edinburgh, UK, Sept. 1999.
R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. 2000
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'00), pages 439-450,
Dallas, TX, May 2000.
---
http://www.Google.com/
我早说红颜祸水了
一有机会,我一定杀了这个人
※ 来源:·日月光华 bbs.fudan.edu.cn·[FROM: 10.11.3.129]
--
※ 来源:.南京大学小百合站 http://bbs.nju.edu.cn [FROM: 210.22.170.74]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -