📄 11.txt
字号:
发信人: GzLi (笑梨), 信区: DataMining
标 题: Re: Ask for your suggestion (About SVM)
发信站: 南京大学小百合站 (Mon Jun 17 18:32:29 2002), 站内信件
问题怎么没有了?
这个问题是一个 Labeled & Unlabeled Problem
我想如果每一个Np中的元素拿来作为一个N元素跟P集的元素用SVM来训练,然后测试是否
有P集中的元素被错分,如果没有,那么这个N元素就是一个N元素 with high confidence
不知是否可行。
【 在 fervvac (高远) 的大作中提到: 】
: I have little background knowledge in classification and none in SVM.
: However, intuitively, is your method reasonable?
: Frist, if the classifier libsvm built is a decent classifier, it should make
: negative predication on most data in NP. Then will the absolute distance
: to THIS classification boundary meaningful?
: Second, how to choose the weight assigned to N and NP? I don't know how
: these weight are used in SVM, but will the result be affected by that
: parameter?
: This problem seems a hybrid of supervised and unsupervised learning. I
: wonder if there are already results for such cases?
: 【 在 strider (怎能没了斗志) 的大作中提到: 】
: : 诸位大牛
: : When doing my study, I bumped into a problem. I would like to discribe this
: : problem here, and then present an early thought on this problem. I hope..
: : your suggestion on this issue . Also, I hope it would not waste your much
: : time.
: : The following is my problem:
: : ------------------------------------------------------------
: : (Input)
: : we have two sets of sample: one set consists of positive examples (labele..
: (以下引言省略 ... ...)
--
*** 端庄厚重 谦卑含容 事有归着 心存济物 ***
今天你挖了吗? DataMining http://DataMining.bbs.lilybbs.net
演草纸式的语言 Matlab http://bbs.sjtu.edu.cn/cgi-bin/bbsdoc?board=Matlab
※ 来源:.南京大学小百合站 bbs.nju.edu.cn.[FROM: 211.80.38.29]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -