⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 21.txt

📁 This complete matlab for neural network
💻 TXT
字号:
发信人: jeff814 (mimi), 信区: DataMining
标  题: osu svm中的Parameters说明
发信站: 南京大学小百合站 (Fri Jun 13 16:00:02 2003)

整理了一下,供使用osu svm的朋友参考


参数Parameters:


|Kernel Type| Degree | Gamma | Coefficient | C |Cache size|epsilon| SVM Type |
	nu (nu-svm) |loss toleration | shrinking |		


Kernel Type:

 0 --- Linear   1 --- Polynomial   2 --- RBF    3 --- Sigmoid


degree: parameter needed for kernel of type polynomial (default:3)


Gamma: parameter needed for all kernels except linear. If the input value is z
ero, Gamma will be set defautly as 1/(max_pattern_dimension) in the function. 
If the input value is non-zero, Gamma will remain unchanged in the function.(d
efault: 1)


Coefficient: parameter needed for kernels of type polynomial and sigmoid (defa
ult:0)


C(线性不可分情况下对错分样本的惩罚系数): Cost of the constrain violation (fo
r C-SVC & C-SVR) (default 1), or the nu for the nu-svm and 1-svm in the second
 stage. This nu should smaller than the nu defined in Parameter(9)


Cache Size: as the buffer to hold the <X(:,i),X(:,j)> (in MB)


epsilon(松弛项): tolerance of termination criterion


SVM Type: (Recommend only using 0, which is c-SVM classifier)(default: 0)

                   0 --- c-SVM classifier

                   1 --- nu-SVM classifier

                   2 --- one-class SVM  (分布估计distribution estimation)

                   3 --- epsilon-SVR 

                   4 --- nu-SVR


nu: the nu of nu-SVM used in the boundary finding process。nu of nu-SVC, one-c
lass SVM, and nu-SVR (default: 0.5)


loss toleration: epsilon in loss function of epsilon-SVR (default: 0.1) 


shrinking: whether to use the shrinking heuristics, 0 or 1 (default: 1)


Percentage(SVMPlot2.m): the percentage of input train samples used for bound
ary finding.	





--

※ 来源:.南京大学小百合站 http://bbs.nju.edu.cn [FROM: 202.99.41.202]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -