📄 bp.m
字号:
%function train_net=train_net()
%训练神经网络函数
load target.txt;
t = target';
load input.txt;
p = input';
[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);
net = newff(minmax(pn),[12,3],{'tansig', 'purelin'},'trainlm','learngd');
net.layers{1}.initFcn = 'initwb';
net.inputWeights{1,1}.initFcn = 'rands';
net.biases{1,1}.initFcn = 'rands';
net.biases{2,1}.initFcn = 'rands';
net = init(net);
%训练参数的设定
net.trainParam.epochs = 3000 % Maximum number of epochs to train
net.trainParam.goal = 0.001 % 0 Performance goal
net.trainParam.max_fail = 5 % Maximum validation failures
net.trainParam.mem_reduc = 1 % Factor to use for memory/speed trade off.
net.trainParam.min_grad = 1e-6% Minimum performance gradient
net.trainParam.show = 5 % 25 Epochs between displays (NaN for no displays)
net.trainParam.time = inf % Maximum time to train in seconds
net.trainParam.mu = 0.001 % Initial Mu
net.trainParam.mu_dec = 0.1 % Mu decrease factor
net.trainParam.mu_inc = 10 % Mu increase factor
LP.lr = 0.5 % 0.01 Learning rate
net = train(net,pn,tn);
save mynet net
%end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -