⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 oaosvmlight.m

📁 st ptool
💻 M
字号:
function [model] = oaosvmlight( data, labels, ker, arg, C, eps, verb)% OAOSVMLIGHT One-Agains-One multi-class decomposition solved by SVM^Light.% % [model] = oaosvmlight( data, labels, ker, arg, C, eps, verb)%% The programs 'svm_learn' and 'svm_classify' must be in the path.%% Inputs:%  data [dim x N] training patterns%  labels [1 x N] labels of training patterns%  ker [string] kernel, see 'help kernel'.%  arg [...] argument of given kernel, see 'help kernel'.%  C [real] trade-off between margin and training error.%  eps [real] KT stopping condiiton.%  verb [int] if 1 then progress info is displayed. % % Output:%  model [struct] contains found O-A-O SVM classifier.% %  Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac%  (c) Czech Technical University Prague, http://cmp.felk.cvut.cz%  Written Vojtech Franc (diploma thesis) 02.11.1999, 13.4.2000%%  Modifications%   3-Jun-2002, V.Franc[dim,num_data ] = size(data);num_classes = max(labels);model.name = 'One-Against-One, SVM classifier';model.num_classes = num_classes;model.num_rules = num_classes*(num_classes-1)/2;model.rule = cell(model.num_rules);model.SVM.C = C;model.SVM.kernel = ker;model.SVM.arg = arg;model.trn_data = data;model.trn_labels = labels;model.kercnt=0;trn_errors = zeros(1, model.num_rules);sv=zeros(1,num_data);cnt=0;%--------------------------------switch ker  case 'linear'    ker='-t 0';  case 'rbf'    ker=['-t 2 -g ' num2str(1/(2*arg^2))];   case 'poly'     ker=['-t 1 -r 1 -s 1 -d ' num2str(arg)];  endcommand=['svm_learn ' ...         '-c ' num2str(C) ' '...         ker ' '...         '-v 1' ' ' ...         '-m 1' ' ' ...         '-e ' num2str(eps) ' '...         '-a tmp_alpha.txt tmp_examples.txt tmp_model.txt > tmp_verb.txt'];   % builds num_classes*(num_classes-1)/2 1-a-1 classfication rulesmodel.btime=cputime;for class1=1:num_classes-1,  for class2=class1+1:num_classes,      cnt=cnt+1;        if verb ==1,      fprintf(1, 'building rule %d-%d (%d of %d) ...', ...        class1,class2, cnt, model.num_rules );    end    model.rule{cnt}.class1 = class1;    model.rule{cnt}.class2 = class2;        % takes data from class1 and class2    model.rule{cnt}.data_inx = find(labels==class1 | labels==class2);    model.rule{cnt}.labels = labels(model.rule{cnt}.data_inx);    model.rule{cnt}.labels(find(model.rule{cnt}.labels==class1))=1;    model.rule{cnt}.labels(find(model.rule{cnt}.labels==class2))=2;      xi2svmlight(data(:,model.rule{cnt}.data_inx),model.rule{cnt}.labels,...        'tmp_examples.txt');        % call SVM_LIGHT%    evalc(command);    [a,b]=unix(command);        [lines]=textread('tmp_model.txt','%s');    for i=1:size(lines,1)      if strcmpi( lines(i), 'threshold' )==1,        bias=-str2num( lines{i-2});        break;      end    end        Alpha=textread('tmp_alpha.txt','%f');    Alpha=Alpha(:)'.*itosgn(model.rule{cnt}.labels);    [lines]=textread('tmp_verb.txt','%s');    for i=1:size(lines,1)      if strcmpi( lines{i}, 'misclassified,' ),        trnerr=str2num( lines{i-1}(2:end));        trnerr=trnerr/length(Alpha);      end      if strcmpi( lines(i), 'vector:' ) & strcmpi( lines(i-1), 'weight' )==1,        margin=1/str2num( lines{i+1}(5:end));      end      if strcmpi( lines(i), 'SV:' )==1,        nsv=str2num( lines{i+1});      end      if strcmpi( lines(i), 'evaluations:' )==1,        kercnt=str2num( lines{i+1});      end    end        model.rule{cnt}.Alpha = Alpha;    model.rule{cnt}.bias = bias;    model.rule{cnt}.kercnt = kercnt;    model.rule{cnt}.margin = margin;    model.rule{cnt}.nsv = length(find(Alpha~=0));    model.rule{cnt}.trnerr = trnerr;    model.kercnt = model.kercnt + kercnt;    trn_errors(cnt) = trnerr;        sv(model.rule{cnt}.data_inx(find(Alpha ~=0)))=1;        if verb ==1,      fprintf(1,'done\n');    end      endendmodel.btime=cputime-model.btime;model.trnerr = mean( trn_errors);model.nsv = length(find(sv ~=0));return;%EOF

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -