⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ft.html

📁 数据挖掘的最常用工具。由于开源
💻 HTML
📖 第 1 页 / 共 4 页
字号:
<DT><B>Returns:</B><DD>the class probabilities<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if distribution can't be computed successfully</DL></DD></DL><HR><A NAME="classifyInstance(weka.core.Instance)"><!-- --></A><H3>classifyInstance</H3><PRE>public double <B>classifyInstance</B>(<A HREF="../../../weka/core/Instance.html" title="class in weka.core">Instance</A>&nbsp;instance)                        throws java.lang.Exception</PRE><DL><DD>Classifies an instance.<P><DD><DL><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#classifyInstance(weka.core.Instance)">classifyInstance</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>instance</CODE> - the instance to classify<DT><B>Returns:</B><DD>the classification<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if instance can't be classified successfully</DL></DD></DL><HR><A NAME="toString()"><!-- --></A><H3>toString</H3><PRE>public java.lang.String <B>toString</B>()</PRE><DL><DD>Returns a description of the classifier.<P><DD><DL><DT><B>Overrides:</B><DD><CODE>toString</CODE> in class <CODE>java.lang.Object</CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>a string representation of the classifier</DL></DD></DL><HR><A NAME="listOptions()"><!-- --></A><H3>listOptions</H3><PRE>public java.util.Enumeration <B>listOptions</B>()</PRE><DL><DD>Returns an enumeration describing the available options.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/OptionHandler.html#listOptions()">listOptions</A></CODE> in interface <CODE><A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#listOptions()">listOptions</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an enumeration of all the available options.</DL></DD></DL><HR><A NAME="setOptions(java.lang.String[])"><!-- --></A><H3>setOptions</H3><PRE>public void <B>setOptions</B>(java.lang.String[]&nbsp;options)                throws java.lang.Exception</PRE><DL><DD>Parses a given list of options. <p/>    <!-- options-start --> Valid options are: <p/>  <pre> -B  Binary splits (convert nominal attributes to binary ones) </pre>  <pre> -P  Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.</pre>  <pre> -I &lt;numIterations&gt;  Set fixed number of iterations for LogitBoost (instead of using cross-validation)</pre>  <pre> -F &lt;modelType&gt;  Set Funtional Tree type to be generate:  0 for FT, 1 for FTLeaves and 2 for FTInner</pre>  <pre> -M &lt;numInstances&gt;  Set minimum number of instances at which a node can be split (default 15)</pre>  <pre> -W &lt;beta&gt;  Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.</pre>  <pre> -A  The AIC is used to choose the best iteration.</pre>    <!-- options-end --><P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/OptionHandler.html#setOptions(java.lang.String[])">setOptions</A></CODE> in interface <CODE><A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#setOptions(java.lang.String[])">setOptions</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>options</CODE> - the list of options as an array of strings<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if an option is not supported</DL></DD></DL><HR><A NAME="getOptions()"><!-- --></A><H3>getOptions</H3><PRE>public java.lang.String[] <B>getOptions</B>()</PRE><DL><DD>Gets the current settings of the Classifier.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/OptionHandler.html#getOptions()">getOptions</A></CODE> in interface <CODE><A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#getOptions()">getOptions</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an array of strings suitable for passing to setOptions</DL></DD></DL><HR><A NAME="getWeightTrimBeta()"><!-- --></A><H3>getWeightTrimBeta</H3><PRE>public double <B>getWeightTrimBeta</B>()</PRE><DL><DD>Get the value of weightTrimBeta.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="getUseAIC()"><!-- --></A><H3>getUseAIC</H3><PRE>public boolean <B>getUseAIC</B>()</PRE><DL><DD>Get the value of useAIC.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>Value of useAIC.</DL></DD></DL><HR><A NAME="setWeightTrimBeta(double)"><!-- --></A><H3>setWeightTrimBeta</H3><PRE>public void <B>setWeightTrimBeta</B>(double&nbsp;n)</PRE><DL><DD>Set the value of weightTrimBeta.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="setUseAIC(boolean)"><!-- --></A><H3>setUseAIC</H3><PRE>public void <B>setUseAIC</B>(boolean&nbsp;c)</PRE><DL><DD>Set the value of useAIC.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>c</CODE> - Value to assign to useAIC.</DL></DD></DL><HR><A NAME="getBinSplit()"><!-- --></A><H3>getBinSplit</H3><PRE>public boolean <B>getBinSplit</B>()</PRE><DL><DD>Get the value of binarySplits.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>Value of binarySplits.</DL></DD></DL><HR><A NAME="getErrorOnProbabilities()"><!-- --></A><H3>getErrorOnProbabilities</H3><PRE>public boolean <B>getErrorOnProbabilities</B>()</PRE><DL><DD>Get the value of errorOnProbabilities.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>Value of errorOnProbabilities.</DL></DD></DL><HR><A NAME="getNumBoostingIterations()"><!-- --></A><H3>getNumBoostingIterations</H3><PRE>public int <B>getNumBoostingIterations</B>()</PRE><DL><DD>Get the value of numBoostingIterations.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>Value of numBoostingIterations.</DL></DD></DL><HR><A NAME="getModelType()"><!-- --></A><H3>getModelType</H3><PRE>public <A HREF="../../../weka/core/SelectedTag.html" title="class in weka.core">SelectedTag</A> <B>getModelType</B>()</PRE><DL><DD>Get the type of functional tree model being used.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the type of functional tree model.</DL></DD></DL><HR><A NAME="setModelType(weka.core.SelectedTag)"><!-- --></A><H3>setModelType</H3><PRE>public void <B>setModelType</B>(<A HREF="../../../weka/core/SelectedTag.html" title="class in weka.core">SelectedTag</A>&nbsp;newMethod)</PRE><DL><DD>Set the Functional Tree type.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>c</CODE> - Value corresponding to tree type.</DL></DD></DL><HR><A NAME="getMinNumInstances()"><!-- --></A><H3>getMinNumInstances</H3><PRE>public int <B>getMinNumInstances</B>()</PRE><DL><DD>Get the value of minNumInstances.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>Value of minNumInstances.</DL></DD></DL><HR><A NAME="setBinSplit(boolean)"><!-- --></A><H3>setBinSplit</H3><PRE>public void <B>setBinSplit</B>(boolean&nbsp;c)</PRE><DL><DD>Set the value of binarySplits.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>c</CODE> - Value to assign to binarySplits.</DL></DD></DL><HR><A NAME="setErrorOnProbabilities(boolean)"><!-- --></A><H3>setErrorOnProbabilities</H3><PRE>public void <B>setErrorOnProbabilities</B>(boolean&nbsp;c)</PRE><DL><DD>Set the value of errorOnProbabilities.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>c</CODE> - Value to assign to errorOnProbabilities.</DL></DD></DL><HR><A NAME="setNumBoostingIterations(int)"><!-- --></A><H3>setNumBoostingIterations</H3><PRE>public void <B>setNumBoostingIterations</B>(int&nbsp;c)</PRE><DL><DD>Set the value of numBoostingIterations.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>c</CODE> - Value to assign to numBoostingIterations.</DL></DD></DL><HR><A NAME="setMinNumInstances(int)"><!-- --></A><H3>setMinNumInstances</H3><PRE>public void <B>setMinNumInstances</B>(int&nbsp;c)</PRE><DL><DD>Set the value of minNumInstances.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>c</CODE> - Value to assign to minNumInstances.</DL></DD></DL><HR><A NAME="graphType()"><!-- --></A><H3>graphType</H3><PRE>public int <B>graphType</B>()</PRE><DL><DD>Returns the type of graph this classifier  represents.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -