⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fttree.html

📁 数据挖掘的最常用工具。由于开源
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/trees/ft/FTtree.html#graph()">graph</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns graph describing the tree.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/trees/ft/FTtree.html#hasModels()">hasModels</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns true if the logistic regression model at this node has changed compared to theone at the parent node.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/trees/ft/FTtree.html#modelDistributionForInstance(weka.core.Instance)">modelDistributionForInstance</A></B>(<A HREF="../../../../weka/core/Instance.html" title="class in weka.core">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the class probabilities for an instance according to the logistic model at the node.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/trees/ft/FTtree.html#modelsToString()">modelsToString</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns a string describing the logistic regression function at the node.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/trees/ft/FTtree.html#numLeaves()">numLeaves</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the number of leaves (normal count).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/trees/ft/FTtree.html#numNodes()">numNodes</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the number of nodes.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>abstract &nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/trees/ft/FTtree.html#prune()">prune</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Abstract Method that prunes a tree using C4.5 pruning procedure.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../weka/classifiers/trees/ft/FTtree.html#toString()">toString</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns a description of the Functional tree (tree structure and logistic models)</TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.trees.lmt.LogisticBase"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TH ALIGN="left"><B>Methods inherited from class weka.classifiers.trees.lmt.<A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html" title="class in weka.classifiers.trees.lmt">LogisticBase</A></B></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#getMaxIterations()">getMaxIterations</A>, <A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#getNumRegressions()">getNumRegressions</A>, <A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#getUseAIC()">getUseAIC</A>, <A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#getUsedAttributes()">getUsedAttributes</A>, <A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#getWeightTrimBeta()">getWeightTrimBeta</A>, <A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#percentAttributesUsed()">percentAttributesUsed</A>, <A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#setHeuristicStop(int)">setHeuristicStop</A>, <A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#setMaxIterations(int)">setMaxIterations</A>, <A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#setUseAIC(boolean)">setUseAIC</A>, <A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#setWeightTrimBeta(double)">setWeightTrimBeta</A></CODE></TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.Classifier"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TH ALIGN="left"><B>Methods inherited from class weka.classifiers.<A HREF="../../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></B></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../../../weka/classifiers/Classifier.html#classifyInstance(weka.core.Instance)">classifyInstance</A>, <A HREF="../../../../weka/classifiers/Classifier.html#debugTipText()">debugTipText</A>, <A HREF="../../../../weka/classifiers/Classifier.html#forName(java.lang.String, java.lang.String[])">forName</A>, <A HREF="../../../../weka/classifiers/Classifier.html#getCapabilities()">getCapabilities</A>, <A HREF="../../../../weka/classifiers/Classifier.html#getDebug()">getDebug</A>, <A HREF="../../../../weka/classifiers/Classifier.html#getOptions()">getOptions</A>, <A HREF="../../../../weka/classifiers/Classifier.html#listOptions()">listOptions</A>, <A HREF="../../../../weka/classifiers/Classifier.html#makeCopies(weka.classifiers.Classifier, int)">makeCopies</A>, <A HREF="../../../../weka/classifiers/Classifier.html#makeCopy(weka.classifiers.Classifier)">makeCopy</A>, <A HREF="../../../../weka/classifiers/Classifier.html#setDebug(boolean)">setDebug</A>, <A HREF="../../../../weka/classifiers/Classifier.html#setOptions(java.lang.String[])">setOptions</A></CODE></TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TH ALIGN="left"><B>Methods inherited from class java.lang.Object</B></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>equals, getClass, hashCode, notify, notifyAll, wait, wait, wait</CODE></TD></TR></TABLE>&nbsp;<P><!-- ========= CONSTRUCTOR DETAIL ======== --><A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="1"><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TH></TR></TABLE><A NAME="FTtree()"><!-- --></A><H3>FTtree</H3><PRE>public <B>FTtree</B>()</PRE><DL></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="1"><FONT SIZE="+2"><B>Method Detail</B></FONT></TH></TR></TABLE><A NAME="buildClassifier(weka.core.Instances)"><!-- --></A><H3>buildClassifier</H3><PRE>public abstract void <B>buildClassifier</B>(<A HREF="../../../../weka/core/Instances.html" title="class in weka.core">Instances</A>&nbsp;data)                              throws java.lang.Exception</PRE><DL><DD>Method for building a Functional Tree (only called for the root node). Grows an initial Functional Tree.<P><DD><DL><DT><B>Overrides:</B><DD><CODE><A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html#buildClassifier(weka.core.Instances)">buildClassifier</A></CODE> in class <CODE><A HREF="../../../../weka/classifiers/trees/lmt/LogisticBase.html" title="class in weka.classifiers.trees.lmt">LogisticBase</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>data</CODE> - the data to train with<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="buildTree(weka.core.Instances, weka.classifiers.functions.SimpleLinearRegression[][], double, double)"><!-- --></A><H3>buildTree</H3><PRE>public abstract void <B>buildTree</B>(<A HREF="../../../../weka/core/Instances.html" title="class in weka.core">Instances</A>&nbsp;data,                               <A HREF="../../../../weka/classifiers/functions/SimpleLinearRegression.html" title="class in weka.classifiers.functions">SimpleLinearRegression</A>[][]&nbsp;higherRegressions,                               double&nbsp;totalInstanceWeight,                               double&nbsp;higherNumParameters)                        throws java.lang.Exception</PRE><DL><DD>Abstract method for building the tree structure. Builds a logistic model, splits the node and recursively builds tree for child nodes.<P><DD><DL><DT><B>Parameters:</B><DD><CODE>data</CODE> - the training data passed on to this node<DD><CODE>higherRegressions</CODE> - An array of regression functions produced by LogitBoost at higher  levels in the tree. They represent a logistic regression model that is refined locally  at this node.<DD><CODE>totalInstanceWeight</CODE> - the total number of training examples<DD><CODE>higherNumParameters</CODE> - effective number of parameters in the logistic regression model built in parent nodes<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="prune()"><!-- --></A><H3>prune</H3><PRE>public abstract double <B>prune</B>()                      throws java.lang.Exception</PRE><DL><DD>Abstract Method that prunes a tree using C4.5 pruning procedure.<P><DD><DL><DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="getNumInnerNodes()"><!-- --></A><H3>getNumInnerNodes</H3><PRE>public int <B>getNumInnerNodes</B>()</PRE><DL><DD>Method to count the number of inner nodes in the tree<P><DD><DL><DT><B>Returns:</B><DD>the number of inner nodes</DL></DD></DL><HR><A NAME="getNumLeaves()"><!-- --></A><H3>getNumLeaves</H3><PRE>public int <B>getNumLeaves</B>()</PRE><DL><DD>Returns the number of leaves in the tree. Leaves are only counted if their logistic model has changed compared to the one of the parent node.<P><DD><DL><DT><B>Returns:</B><DD>the number of leaves</DL></DD></DL><HR><A NAME="getNodes()"><!-- --></A><H3>getNodes</H3><PRE>public java.util.Vector <B>getNodes</B>()</PRE><DL><DD>Return a list of all inner nodes in the tree<P><DD><DL><DT><B>Returns:</B><DD>the list of nodes</DL></DD></DL><HR><A NAME="getNodes(java.util.Vector)"><!-- --></A><H3>getNodes</H3><PRE>public void <B>getNodes</B>(java.util.Vector&nbsp;nodeList)</PRE><DL><DD>Fills a list with all inner nodes in the tree<P><DD><DL><DT><B>Parameters:</B><DD><CODE>nodeList</CODE> - the list to be filled</DL></DD></DL><HR><A NAME="getConstError(double[])"><!-- --></A><H3>getConstError</H3><PRE>public int <B>getConstError</B>(double[]&nbsp;probsConst)</PRE><DL><DD><DL><DT><B>Type Parameters:</B><DD><CODE>any</CODE> - probsConst</DL></DD></DL><HR><A NAME="hasModels()"><!-- --></A><H3>hasModels</H3><PRE>public boolean <B>hasModels</B>()</PRE><DL><DD>Returns true if the logistic regression model at this node has changed compared to theone at the parent node.<P><DD><DL>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -