📄 evaluation.html
字号:
<TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#precision(int)">precision</A></B>(int classIndex)</CODE><BR> Calculate the precision with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> <A HREF="../../weka/core/FastVector.html" title="class in weka.core">FastVector</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#predictions()">predictions</A></B>()</CODE><BR> Returns the predictions that have been collected.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#printClassifications(weka.classifiers.Classifier, weka.core.Instances, weka.core.converters.ConverterUtils.DataSource, int, weka.core.Range, boolean, java.lang.StringBuffer)">printClassifications</A></B>(<A HREF="../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A> classifier, <A HREF="../../weka/core/Instances.html" title="class in weka.core">Instances</A> train, <A HREF="../../weka/core/converters/ConverterUtils.DataSource.html" title="class in weka.core.converters">ConverterUtils.DataSource</A> testSource, int classIndex, <A HREF="../../weka/core/Range.html" title="class in weka.core">Range</A> attributesToOutput, boolean printDistribution, java.lang.StringBuffer text)</CODE><BR> Prints the predictions for the given dataset into a supplied StringBuffer</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#printClassifications(weka.classifiers.Classifier, weka.core.Instances, weka.core.converters.ConverterUtils.DataSource, int, weka.core.Range, java.lang.StringBuffer)">printClassifications</A></B>(<A HREF="../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A> classifier, <A HREF="../../weka/core/Instances.html" title="class in weka.core">Instances</A> train, <A HREF="../../weka/core/converters/ConverterUtils.DataSource.html" title="class in weka.core.converters">ConverterUtils.DataSource</A> testSource, int classIndex, <A HREF="../../weka/core/Range.html" title="class in weka.core">Range</A> attributesToOutput, java.lang.StringBuffer predsText)</CODE><BR> Prints the predictions for the given dataset into a String variable.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#priorEntropy()">priorEntropy</A></B>()</CODE><BR> Calculate the entropy of the prior distribution</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#recall(int)">recall</A></B>(int classIndex)</CODE><BR> Calculate the recall with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#relativeAbsoluteError()">relativeAbsoluteError</A></B>()</CODE><BR> Returns the relative absolute error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#rootMeanPriorSquaredError()">rootMeanPriorSquaredError</A></B>()</CODE><BR> Returns the root mean prior squared error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#rootMeanSquaredError()">rootMeanSquaredError</A></B>()</CODE><BR> Returns the root mean squared error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#rootRelativeSquaredError()">rootRelativeSquaredError</A></B>()</CODE><BR> Returns the root relative squared error if the class is numeric.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#setPriors(weka.core.Instances)">setPriors</A></B>(<A HREF="../../weka/core/Instances.html" title="class in weka.core">Instances</A> train)</CODE><BR> Sets the class prior probabilities</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFEntropyGain()">SFEntropyGain</A></B>()</CODE><BR> Returns the total SF, which is the null model entropy minus the scheme entropy.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFMeanEntropyGain()">SFMeanEntropyGain</A></B>()</CODE><BR> Returns the SF per instance, which is the null model entropy minus the scheme entropy, per instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFMeanPriorEntropy()">SFMeanPriorEntropy</A></B>()</CODE><BR> Returns the entropy per instance for the null model</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFMeanSchemeEntropy()">SFMeanSchemeEntropy</A></B>()</CODE><BR> Returns the entropy per instance for the scheme</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFPriorEntropy()">SFPriorEntropy</A></B>()</CODE><BR> Returns the total entropy for the null model</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFSchemeEntropy()">SFSchemeEntropy</A></B>()</CODE><BR> Returns the total entropy for the scheme</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#toClassDetailsString()">toClassDetailsString</A></B>()</CODE><BR> Generates a breakdown of the accuracy for each class (with default title), incorporating various information-retrieval statistics, such as true/false positive rate, precision/recall/F-Measure.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#toClassDetailsString(java.lang.String)">toClassDetailsString</A></B>(java.lang.String title)</CODE><BR> Generates a breakdown of the accuracy for each class, incorporating various information-retrieval statistics, such as true/false positive rate, precision/recall/F-Measure.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#toCumulativeMarginDistributionString()">toCumulativeMarginDistributionString</A></B>()</CODE><BR> Output the cumulative margin distribution as a string suitable for input for gnuplot or similar package.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#toMatrixString()">toMatrixString</A></B>()</CODE><BR> Calls toMatrixString() with a default title.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#toMatrixString(java.lang.String)">toMatrixString</A></B>(java.lang.String title)</CODE><BR> Outputs the performance statistics as a classification confusion matrix.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#toSummaryString()">toSummaryString</A></B>()</CODE><BR> Calls toSummaryString() with no title and no complexity stats</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#toSummaryString(boolean)">toSummaryString</A></B>(boolean printComplexityStatistics)</CODE><BR> Calls toSummaryString() with a default title.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#toSummaryString(java.lang.String, boolean)">toSummaryString</A></B>(java.lang.String title, boolean printComplexityStatistics)</CODE><BR> Outputs the performance statistics in summary form.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#totalCost()">totalCost</A></B>()</CODE><BR> Gets the total cost, that is, the cost of each prediction times the weight of the instance, summed over all instances.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#trueNegativeRate(int)">trueNegativeRate</A></B>(int classIndex)</CODE><BR> Calculate the true negative rate with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#truePositiveRate(int)">truePositiveRate</A></B>(int classIndex)</CODE><BR> Calculate the true positive rate with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#unclassified()">unclassified</A></B>()</CODE><BR> Gets the number of instances not classified (that is, for which no prediction was made by the classifier).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#updatePriors(weka.core.Instance)">updatePriors</A></B>(<A HREF="../../weka/core/Instance.html" title="class in weka.core">Instance</A> instance)</CODE><BR> Updates the class prior probabilities (when incrementally training)</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#useNoPriors()">useNoPriors</A></B>()</CODE><BR> disables the use of priors, e.g., in case of de-serialized schemes that have no access to the original training set, but are evaluated on a set set.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#wekaStaticWrapper(weka.classifiers.Sourcable, java.lang.String)">wekaStaticWrapper</A></B>(<A HREF="../../weka/classifiers/Sourcable.html" title="interface in weka.classifiers">Sourcable</A> classifier, java.lang.String className)</CODE><BR> Wraps a static classifier in enough source to test using the weka class libraries.</TD></TR></TABLE> <A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TH ALIGN="left"><B>Methods inherited from class java.lang.Object</B></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>getClass, hashCode, notify, notifyAll, toString, wait, wait, wait</CODE></TD></TR></TABLE> <P><!-- ========= CONSTRUCTOR DETAIL ======== -->
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -