📄 dsgt01.f
字号:
SUBROUTINE DSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D,
$ WORK, RESULT )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* modified August 1997, a new parameter M is added to the calling
* sequence.
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER ITYPE, LDA, LDB, LDZ, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), D( * ), RESULT( * ),
$ WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DDGT01 checks a decomposition of the form
*
* A Z = B Z D or
* A B Z = Z D or
* B A Z = Z D
*
* where A is a symmetric matrix, B is
* symmetric positive definite, Z is orthogonal, and D is diagonal.
*
* One of the following test ratios is computed:
*
* ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )
*
* ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )
*
* ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* The form of the symmetric generalized eigenproblem.
* = 1: A*z = (lambda)*B*z
* = 2: A*B*z = (lambda)*z
* = 3: B*A*z = (lambda)*z
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrices A and B is stored.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* M (input) INTEGER
* The number of eigenvalues found. 0 <= M <= N.
*
* A (input) DOUBLE PRECISION array, dimension (LDA, N)
* The original symmetric matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input) DOUBLE PRECISION array, dimension (LDB, N)
* The original symmetric positive definite matrix B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* Z (input) DOUBLE PRECISION array, dimension (LDZ, M)
* The computed eigenvectors of the generalized eigenproblem.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= max(1,N).
*
* D (input) DOUBLE PRECISION array, dimension (M)
* The computed eigenvalues of the generalized eigenproblem.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (N*N)
*
* RESULT (output) DOUBLE PRECISION array, dimension (1)
* The test ratio as described above.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
INTEGER I
DOUBLE PRECISION ANORM, ULP
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, DSYMM
* ..
* .. Executable Statements ..
*
RESULT( 1 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
ULP = DLAMCH( 'Epsilon' )
*
* Compute product of 1-norms of A and Z.
*
ANORM = DLANSY( '1', UPLO, N, A, LDA, WORK )*
$ DLANGE( '1', N, M, Z, LDZ, WORK )
IF( ANORM.EQ.ZERO )
$ ANORM = ONE
*
IF( ITYPE.EQ.1 ) THEN
*
* Norm of AZ - BZD
*
CALL DSYMM( 'Left', UPLO, N, M, ONE, A, LDA, Z, LDZ, ZERO,
$ WORK, N )
DO 10 I = 1, M
CALL DSCAL( N, D( I ), Z( 1, I ), 1 )
10 CONTINUE
CALL DSYMM( 'Left', UPLO, N, M, ONE, B, LDB, Z, LDZ, -ONE,
$ WORK, N )
*
RESULT( 1 ) = ( DLANGE( '1', N, M, WORK, N, WORK ) / ANORM ) /
$ ( N*ULP )
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Norm of ABZ - ZD
*
CALL DSYMM( 'Left', UPLO, N, M, ONE, B, LDB, Z, LDZ, ZERO,
$ WORK, N )
DO 20 I = 1, M
CALL DSCAL( N, D( I ), Z( 1, I ), 1 )
20 CONTINUE
CALL DSYMM( 'Left', UPLO, N, M, ONE, A, LDA, WORK, N, -ONE, Z,
$ LDZ )
*
RESULT( 1 ) = ( DLANGE( '1', N, M, Z, LDZ, WORK ) / ANORM ) /
$ ( N*ULP )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* Norm of BAZ - ZD
*
CALL DSYMM( 'Left', UPLO, N, M, ONE, A, LDA, Z, LDZ, ZERO,
$ WORK, N )
DO 30 I = 1, M
CALL DSCAL( N, D( I ), Z( 1, I ), 1 )
30 CONTINUE
CALL DSYMM( 'Left', UPLO, N, M, ONE, B, LDB, WORK, N, -ONE, Z,
$ LDZ )
*
RESULT( 1 ) = ( DLANGE( '1', N, M, Z, LDZ, WORK ) / ANORM ) /
$ ( N*ULP )
END IF
*
RETURN
*
* End of DDGT01
*
END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -