⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chet22.f

📁 famous linear algebra library (LAPACK) ports to windows
💻 F
字号:
      SUBROUTINE CHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
     $                   V, LDV, TAU, WORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * ), RESULT( 2 ), RWORK( * )
      COMPLEX            A( LDA, * ), TAU( * ), U( LDU, * ),
     $                   V( LDV, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*       CHET22  generally checks a decomposition of the form
*
*               A U = U S
*
*       where A is complex Hermitian, the columns of U are orthonormal,
*       and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
*       KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,
*       otherwise the U is expressed as a product of Householder
*       transformations, whose vectors are stored in the array "V" and
*       whose scaling constants are in "TAU"; we shall use the letter
*       "V" to refer to the product of Householder transformations
*       (which should be equal to U).
*
*       Specifically, if ITYPE=1, then:
*
*               RESULT(1) = | U' A U - S | / ( |A| m ulp ) *and*
*               RESULT(2) = | I - U'U | / ( m ulp )
*
*  Arguments
*  =========
*
*  ITYPE   INTEGER
*          Specifies the type of tests to be performed.
*          1: U expressed as a dense orthogonal matrix:
*             RESULT(1) = | A - U S U' | / ( |A| n ulp )   *and*
*             RESULT(2) = | I - UU' | / ( n ulp )
*
*  UPLO    CHARACTER
*          If UPLO='U', the upper triangle of A will be used and the
*          (strictly) lower triangle will not be referenced.  If
*          UPLO='L', the lower triangle of A will be used and the
*          (strictly) upper triangle will not be referenced.
*          Not modified.
*
*  N       INTEGER
*          The size of the matrix.  If it is zero, CHET22 does nothing.
*          It must be at least zero.
*          Not modified.
*
*  M       INTEGER
*          The number of columns of U.  If it is zero, CHET22 does
*          nothing.  It must be at least zero.
*          Not modified.
*
*  KBAND   INTEGER
*          The bandwidth of the matrix.  It may only be zero or one.
*          If zero, then S is diagonal, and E is not referenced.  If
*          one, then S is symmetric tri-diagonal.
*          Not modified.
*
*  A       COMPLEX array, dimension (LDA , N)
*          The original (unfactored) matrix.  It is assumed to be
*          symmetric, and only the upper (UPLO='U') or only the lower
*          (UPLO='L') will be referenced.
*          Not modified.
*
*  LDA     INTEGER
*          The leading dimension of A.  It must be at least 1
*          and at least N.
*          Not modified.
*
*  D       REAL array, dimension (N)
*          The diagonal of the (symmetric tri-) diagonal matrix.
*          Not modified.
*
*  E       REAL array, dimension (N)
*          The off-diagonal of the (symmetric tri-) diagonal matrix.
*          E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
*          Not referenced if KBAND=0.
*          Not modified.
*
*  U       COMPLEX array, dimension (LDU, N)
*          If ITYPE=1, this contains the orthogonal matrix in
*          the decomposition, expressed as a dense matrix.
*          Not modified.
*
*  LDU     INTEGER
*          The leading dimension of U.  LDU must be at least N and
*          at least 1.
*          Not modified.
*
*  V       COMPLEX array, dimension (LDV, N)
*          If ITYPE=2 or 3, the lower triangle of this array contains
*          the Householder vectors used to describe the orthogonal
*          matrix in the decomposition.  If ITYPE=1, then it is not
*          referenced.
*          Not modified.
*
*  LDV     INTEGER
*          The leading dimension of V.  LDV must be at least N and
*          at least 1.
*          Not modified.
*
*  TAU     COMPLEX array, dimension (N)
*          If ITYPE >= 2, then TAU(j) is the scalar factor of
*          v(j) v(j)' in the Householder transformation H(j) of
*          the product  U = H(1)...H(n-2)
*          If ITYPE < 2, then TAU is not referenced.
*          Not modified.
*
*  WORK    COMPLEX array, dimension (2*N**2)
*          Workspace.
*          Modified.
*
*  RWORK   REAL array, dimension (N)
*          Workspace.
*          Modified.
*
*  RESULT  REAL array, dimension (2)
*          The values computed by the two tests described above.  The
*          values are currently limited to 1/ulp, to avoid overflow.
*          RESULT(1) is always modified.  RESULT(2) is modified only
*          if LDU is at least N.
*          Modified.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),
     $                   CONE = ( 1.0E0, 0.0E0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            J, JJ, JJ1, JJ2, NN, NNP1
      REAL               ANORM, ULP, UNFL, WNORM
*     ..
*     .. External Functions ..
      REAL               CLANHE, SLAMCH
      EXTERNAL           CLANHE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CHEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 .OR. M.LE.0 )
     $   RETURN
*
      UNFL = SLAMCH( 'Safe minimum' )
      ULP = SLAMCH( 'Precision' )
*
*     Do Test 1
*
*     Norm of A:
*
      ANORM = MAX( CLANHE( '1', UPLO, N, A, LDA, RWORK ), UNFL )
*
*     Compute error matrix:
*
*     ITYPE=1: error = U' A U - S
*
      CALL CHEMM( 'L', UPLO, N, M, CONE, A, LDA, U, LDU, CZERO, WORK,
     $            N )
      NN = N*N
      NNP1 = NN + 1
      CALL CGEMM( 'C', 'N', M, M, N, CONE, U, LDU, WORK, N, CZERO,
     $            WORK( NNP1 ), N )
      DO 10 J = 1, M
         JJ = NN + ( J-1 )*N + J
         WORK( JJ ) = WORK( JJ ) - D( J )
   10 CONTINUE
      IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
         DO 20 J = 2, M
            JJ1 = NN + ( J-1 )*N + J - 1
            JJ2 = NN + ( J-2 )*N + J
            WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
            WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
   20    CONTINUE
      END IF
      WNORM = CLANHE( '1', UPLO, M, WORK( NNP1 ), N, RWORK )
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  U'U - I
*
      IF( ITYPE.EQ.1 )
     $   CALL CUNT01( 'Columns', N, M, U, LDU, WORK, 2*N*N, RWORK,
     $                RESULT( 2 ) )
*
      RETURN
*
*     End of CHET22
*
      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -