📄 zlagsy.f
字号:
SUBROUTINE ZLAGSY( N, K, D, A, LDA, ISEED, WORK, INFO )
*
* -- LAPACK auxiliary test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
DOUBLE PRECISION D( * )
COMPLEX*16 A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* ZLAGSY generates a complex symmetric matrix A, by pre- and post-
* multiplying a real diagonal matrix D with a random unitary matrix:
* A = U*D*U**T. The semi-bandwidth may then be reduced to k by
* additional unitary transformations.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* K (input) INTEGER
* The number of nonzero subdiagonals within the band of A.
* 0 <= K <= N-1.
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The diagonal elements of the diagonal matrix D.
*
* A (output) COMPLEX*16 array, dimension (LDA,N)
* The generated n by n symmetric matrix A (the full matrix is
* stored).
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= N.
*
* ISEED (input/output) INTEGER array, dimension (4)
* On entry, the seed of the random number generator; the array
* elements must be between 0 and 4095, and ISEED(4) must be
* odd.
* On exit, the seed is updated.
*
* WORK (workspace) COMPLEX*16 array, dimension (2*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE, HALF
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ),
$ HALF = ( 0.5D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, II, J, JJ
DOUBLE PRECISION WN
COMPLEX*16 ALPHA, TAU, WA, WB
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZAXPY, ZGEMV, ZGERC, ZLACGV, ZLARNV,
$ ZSCAL, ZSYMV
* ..
* .. External Functions ..
DOUBLE PRECISION DZNRM2
COMPLEX*16 ZDOTC
EXTERNAL DZNRM2, ZDOTC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.LT.0 ) THEN
CALL XERBLA( 'ZLAGSY', -INFO )
RETURN
END IF
*
* initialize lower triangle of A to diagonal matrix
*
DO 20 J = 1, N
DO 10 I = J + 1, N
A( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
DO 30 I = 1, N
A( I, I ) = D( I )
30 CONTINUE
*
* Generate lower triangle of symmetric matrix
*
DO 60 I = N - 1, 1, -1
*
* generate random reflection
*
CALL ZLARNV( 3, ISEED, N-I+1, WORK )
WN = DZNRM2( N-I+1, WORK, 1 )
WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
IF( WN.EQ.ZERO ) THEN
TAU = ZERO
ELSE
WB = WORK( 1 ) + WA
CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
WORK( 1 ) = ONE
TAU = DBLE( WB / WA )
END IF
*
* apply random reflection to A(i:n,i:n) from the left
* and the right
*
* compute y := tau * A * conjg(u)
*
CALL ZLACGV( N-I+1, WORK, 1 )
CALL ZSYMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO,
$ WORK( N+1 ), 1 )
CALL ZLACGV( N-I+1, WORK, 1 )
*
* compute v := y - 1/2 * tau * ( u, y ) * u
*
ALPHA = -HALF*TAU*ZDOTC( N-I+1, WORK, 1, WORK( N+1 ), 1 )
CALL ZAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 )
*
* apply the transformation as a rank-2 update to A(i:n,i:n)
*
* CALL ZSYR2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1,
* $ A( I, I ), LDA )
*
DO 50 JJ = I, N
DO 40 II = JJ, N
A( II, JJ ) = A( II, JJ ) -
$ WORK( II-I+1 )*WORK( N+JJ-I+1 ) -
$ WORK( N+II-I+1 )*WORK( JJ-I+1 )
40 CONTINUE
50 CONTINUE
60 CONTINUE
*
* Reduce number of subdiagonals to K
*
DO 100 I = 1, N - 1 - K
*
* generate reflection to annihilate A(k+i+1:n,i)
*
WN = DZNRM2( N-K-I+1, A( K+I, I ), 1 )
WA = ( WN / ABS( A( K+I, I ) ) )*A( K+I, I )
IF( WN.EQ.ZERO ) THEN
TAU = ZERO
ELSE
WB = A( K+I, I ) + WA
CALL ZSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 )
A( K+I, I ) = ONE
TAU = DBLE( WB / WA )
END IF
*
* apply reflection to A(k+i:n,i+1:k+i-1) from the left
*
CALL ZGEMV( 'Conjugate transpose', N-K-I+1, K-1, ONE,
$ A( K+I, I+1 ), LDA, A( K+I, I ), 1, ZERO, WORK, 1 )
CALL ZGERC( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1,
$ A( K+I, I+1 ), LDA )
*
* apply reflection to A(k+i:n,k+i:n) from the left and the right
*
* compute y := tau * A * conjg(u)
*
CALL ZLACGV( N-K-I+1, A( K+I, I ), 1 )
CALL ZSYMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA,
$ A( K+I, I ), 1, ZERO, WORK, 1 )
CALL ZLACGV( N-K-I+1, A( K+I, I ), 1 )
*
* compute v := y - 1/2 * tau * ( u, y ) * u
*
ALPHA = -HALF*TAU*ZDOTC( N-K-I+1, A( K+I, I ), 1, WORK, 1 )
CALL ZAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 )
*
* apply symmetric rank-2 update to A(k+i:n,k+i:n)
*
* CALL ZSYR2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1,
* $ A( K+I, K+I ), LDA )
*
DO 80 JJ = K + I, N
DO 70 II = JJ, N
A( II, JJ ) = A( II, JJ ) - A( II, I )*WORK( JJ-K-I+1 ) -
$ WORK( II-K-I+1 )*A( JJ, I )
70 CONTINUE
80 CONTINUE
*
A( K+I, I ) = -WA
DO 90 J = K + I + 1, N
A( J, I ) = ZERO
90 CONTINUE
100 CONTINUE
*
* Store full symmetric matrix
*
DO 120 J = 1, N
DO 110 I = J + 1, N
A( J, I ) = A( I, J )
110 CONTINUE
120 CONTINUE
RETURN
*
* End of ZLAGSY
*
END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -