📄 chet01.f
字号:
SUBROUTINE CHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
$ RWORK, RESID )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAFAC, LDC, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL RWORK( * )
COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
* ..
*
* Purpose
* =======
*
* CHET01 reconstructs a Hermitian indefinite matrix A from its
* block L*D*L' or U*D*U' factorization and computes the residual
* norm( C - A ) / ( N * norm(A) * EPS ),
* where C is the reconstructed matrix, EPS is the machine epsilon,
* L' is the conjugate transpose of L, and U' is the conjugate transpose
* of U.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* Hermitian matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The original Hermitian matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N)
*
* AFAC (input) COMPLEX array, dimension (LDAFAC,N)
* The factored form of the matrix A. AFAC contains the block
* diagonal matrix D and the multipliers used to obtain the
* factor L or U from the block L*D*L' or U*D*U' factorization
* as computed by CHETRF.
*
* LDAFAC (input) INTEGER
* The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from CHETRF.
*
* C (workspace) COMPLEX array, dimension (LDC,N)
*
* LDC (integer) INTEGER
* The leading dimension of the array C. LDC >= max(1,N).
*
* RWORK (workspace) REAL array, dimension (N)
*
* RESID (output) REAL
* If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
* If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
REAL ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANHE, SLAMCH
EXTERNAL LSAME, CLANHE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLAVHE, CLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG, REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
*
* Check the imaginary parts of the diagonal elements and return with
* an error code if any are nonzero.
*
DO 10 J = 1, N
IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
10 CONTINUE
*
* Initialize C to the identity matrix.
*
CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
* Call CLAVHE to form the product D * U' (or D * L' ).
*
CALL CLAVHE( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, LDAFAC,
$ IPIV, C, LDC, INFO )
*
* Call CLAVHE again to multiply by U (or L ).
*
CALL CLAVHE( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
$ IPIV, C, LDC, INFO )
*
* Compute the difference C - A .
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 30 J = 1, N
DO 20 I = 1, J - 1
C( I, J ) = C( I, J ) - A( I, J )
20 CONTINUE
C( J, J ) = C( J, J ) - REAL( A( J, J ) )
30 CONTINUE
ELSE
DO 50 J = 1, N
C( J, J ) = C( J, J ) - REAL( A( J, J ) )
DO 40 I = J + 1, N
C( I, J ) = C( I, J ) - A( I, J )
40 CONTINUE
50 CONTINUE
END IF
*
* Compute norm( C - A ) / ( N * norm(A) * EPS )
*
RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of CHET01
*
END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -